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0.1 Les nombres naturels N et induction
"Les nombres entiers sont créés par Dieu, tout le reste est l'œuvre des hommes" (Leopold Kronecker 1886)
Les nombres naturels sont l’ensemble N = {1, 2, 3, ...}.
N est utile pour l’induction mathématique :
0.1.1 Induction
Pour tout n ∈ N soit donné une affirmation A(n). Une stratégie pour vérifier ces affirmations est
Le principe de l’induction. Toutes les affirmations A(n) sont correctes si on sait prouver (I) et (II) :
· (I) A(1) est correcte (le départ de l’induction)
· (II) Si A(n) est correcte, alors A(n+1) est correcte (l’étape de l’induction)
Exemple 1. Pour tout n ∈ N on a
A(n) := 1 + 2 + 3 + ... + n = 1/2 n(n+1)
Preuve. (I) : A(1) est correcte.
(II) : Supposons que A(n) est correcte. Alors
1 + 2 + 3 + ... + n + (n+1) = 1/2 n(n+1) + (n+1) = 1/2 (n+1)(n+2)
□
0. Les nombres réels
Example 2. Pour tout nombre réel x ≠ 1 on a la formule
1 + x + x^2 + \cdots + x^n = \frac{1 - x^{n+1}}{1 - x}
Preuve.
(I) : 1 + x = \frac{1 - x^2}{1 - x} est correcte.
(II) : A(n) \sim A(n + 1) :
1 + x + x^2 + \cdots + x^n + x^{n+1} = \frac{1 - x^{n+1}}{1 - x} + x^{n+1} = \frac{1 - x^{n+1}}{1 - x} + \frac{(1 - x) x^{n+1}}{1 - x} = \frac{1 - x^{n+2}}{1 - x}
d'où A(n + 1) est correcte.
0.1.2 Factorielles et coefficients binomiaux
Pour tout n \in \mathbb{N} on définit n! par
n! := 1 \cdot 2 \cdot 3 \cdots n
Pour n! on n’a pas de formule autant simple que pour 1 + 2 + \cdots + n. On voit que n! croît énormément vite, par exemple
10! = 3 628 800 et 100! > 4 \cdot 10^{2568}
Les factoriales sont importantes en analyse combinatoire :
Proposition 1. Le nombre d’arrangements de n éléments différents est n!
Preuve. Dénotons les éléments par 1, 2, \ldots, n. Nous faisons la preuve par induction :
(I) : A(1) est correcte.
(II) : A(n) \sim A(n+1) : La classe des arrangements qui ont à la première place l’élément k contient n! arrangements. Il y a n + 1 telles classes. Le nombre d’arrangements à n + 1 éléments est donc (n + 1)! = (n + 1)!
Exemple. Pour n = 3 on a les six arrangements
123 132 213 231 312 321
0.1. Les nombres naturels N et induction
Une permutation d’un ensemble E est une application bijective P : E → E. Si E = {1, ..., n}, une permutation P donne un arrangement de 1, ..., n :
P(1), ..., P(n).
Inversement, tout arrangement k₁, ..., kₙ de 1, ..., n détermine la permutation P(j) = kⱼ, de 1, ..., n. Donc :
Proposition 1.Le nombre de permutations à n éléments différents est n!
Il sera utile d’étendre la définition de n! sur N ∪ {0}. On veut que
(n + 1)! = (n + 1)n! (F)
est encore vrai pour n = 0. On pose donc 0! = 1
Les coefficients binômiaux
Proposition 2 et Définition. Le nombre de sous-ensembles à k éléments d’un ensemble à n éléments différents est
	 
	 
	
	
	

	n!
	k!(n−k)!
	=
	( n )
	k


Preuve. si k = 0 : On a un seul sous-ensemble à 0 éléments, l’ensemble vide, et n! / 0!n! = 1
si k > 0 : Formons un arrangement à k éléments :
Pour le premier élément, on a n possibilités,
pour le deuxième élément, il reste n − 1 possibilités,
...
pour le kᵉᵐ élément, il reste n − k + 1 possibilités.
On a donc n(n−1) ... (n−k+1) possibilités de former un arrangement à k éléments.
Les possibilités donnant le même sous-ensemble à k éléments sont celles qui ne diffèrent que dans l’ordre des k éléments choisis. Par la Proposition 1 ce sont k! possibilités. Le nombre cherché est donc
n(n−1) ... (n−k+1)
/ k! = n! / k!(n−k)!
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Example (6 de 49) Un ensemble à 49 éléments contient
	(
	49
	)

	 
	 
	 


6!43! = \frac{49!}{6!43!} = \frac{49 \cdot 48 \cdot 47 \cdot 46 \cdot 45 \cdot 44}{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6} = 13'983'816
sous-ensembles à 6 éléments. La probabilité de deviner au loto six nombres corrects sur 49 est donc environ 1 : 14 millions.
Les nombres  s'appellent les coefficients binomiaux comme ils apparaissent dans le développement binomial :
Proposition 3 (Développement binomial)
Pour tout exposant n  et tout nombre réel x  on a
	(
	1 + x)^n
	= 1 +  x +  x^2 +  +  x^{n-1} + x^n

	 
	 
	 


Preuve. En développant (1 + x)^n, pour produire un terme x^k on choisit k parenthèses parmi les n parenthèses dans (1 + x)^n, et on prend x de chacune de ces parenthèses et on prend le 1 des autres n - k parenthèses. Par la Proposition 2, il y a  tels choix. □
En posant x =  et en multipliant par a^n, la formule du binôme devient
(a + b)^n = a^n b^0 +  a^{n-1} b +  a^{n-2} b^2 +  +  a b^{n-1} + a^n b^n
=  .
Remarquons que
 =  =  .
En plus, on a la formule récursive
 =  +  .
0.1. Les nombres naturels N et induction
Preuve. La formule est vraie pour k = 0, comme n + 1 = 1 + n. Pour k > 0,
	(n
	k)

	(n
	k + 1)


= n(n - 1) · · · (n - k + 1) / k! + n(n - 1) · · · (n - k) / k!(k + 1)
= n(n - 1) · · · (n - k + 1)(k + 1 + n - k) / (k + 1)!
= (n + 1)n(n - 1) · · · (n + 1 - k) / (k + 1)!
= (n + 1) ( n
n - 1) · · · (n + 1 - k) / (k + 1)!
= (n + 1) ( n
n - 1) · · · (n + 1 - k) / (k + 1)!
= (n + 1) ( n
n - 1) · · · (n + 1 - k) / (k + 1)!
= (n + 1) ( n
n - 1) · · · (n + 1 - k) / (k + 1)!
= (n + 1) ( n
n - 1) · · · (n + 1 - k) / (k + 1)!
= (n + 1) ( n
n - 1) · · · (n + 1 - k) / (k + 1)!
= (n + 1) ( n
n - 1) · · · (n + 1 - k) / (k + 1)!
= (n + 1) ( n
n - 1) · · · (n + 1 - k) / (k + 1)!
= (n + 1) ( n
n - 1) · · · (n + 1 - k) / (k + 1)!
= (n + 1) ( n
n - 1) · · · (n + 1 - k) / (k + 1)!
= (n + 1) ( n
n - 1) · · · (n + 1 - k) / (k + 1)!
= (n + 1) ( n
n - 1) · · · (n + 1 - k) / (k + 1)!
= (n + 1) ( n
n - 1) · · · (n + 1 - k) / (k + 1)!
= (n + 1) ( n
n - 1) · · · (n + 1 - k) / (k + 1)!
= (n + 1) ( n
n - 1) · · · (n + 1 - k) / (k + 1)!
= (n + 1) ( n
n - 1) · · · (n + 1 - k) / (k + 1)!
= (n + 1) ( n
n - 1) · · · (n + 1 - k) / (k + 1)!
= (n + 1) ( n
n - 1) · · · (n + 1 - k) / (k + 1)!
= (n + 1) ( n
n - 1) · · · (n + 1 - k) / (k + 1)!
= (n + 1) ( n
n - 1) · · · (n + 1 - k) / (k + 1)!
= (n + 1) ( n
n - 1) · · · (n + 1 - k) / (k + 1)!
= (n + 1) ( n
n - 1) · · · (n + 1 - k) / (k + 1)!
= (n + 1) ( n
n - 1) · · · (n + 1 - k) / (k + 1)!
= (n + 1) ( n
n - 1) · · · (n + 1 - k) / (k + 1)!
= (n + 1) ( n
n - 1) · · · (n + 1 - k) / (k + 1)!
= (n + 1) ( n
n - 1) · · · (n + 1 - k) / (k + 1)!
= (n + 1) ( n
n - 1) · · · (n + 1 - k) / (k + 1)!
= (n + 1) ( n
n - 1) · · · (n + 1 - k) / (k + 1)!
= (n + 1) ( n
n - 1) · · · (n + 1 - k) / (k + 1)!
= (n + 1) ( n
n - 1) · · · (n + 1 - k) / (k + 1)!
= 2^n.
En donner l’interprétation dans le triangle de Pascal.
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Chapitre 1
Les nombres réels
Géométriquement, les nombres réels forment une droite orientée :
------------------------------> R
0 1
FIGURE 1.1 – La droite des nombres réels ℝ
Nous connaissons déjà les ensembles suivants.
N = {1, 2, 3, ...} : les nombres naturels
N ∪ {0} = {0, 1, 2, 3, ...}
Dans N et N ∪ {0} on peut additionner et multiplier, mais en général on ne peut pas soustraire les nombres.
Z = {0, ±1, ±2, ±3, ...} = N ∪ -N ∪ {0} : les nombres entiers
Dans Z on peut, de plus, soustraire les nombres, mais en général on ne peut pas diviser.
Q = {m/n | m ∈ Z, n ∈ N} : les nombres rationnels
Dans Q on peut faire toutes les opérations “addition”, “soustraction”, “multiplication”, et “division”. Mais on ne peut pas prendre la racine, en général :
Lemme. √2 ∉ Q
Preuve. Supposons que √2 = m/n ∈ Q. Sans perte de généralité nous pouvons supposer que m/n est réduit. En prenant le carré nous obtenons
2 = m²/n²
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et donc
2n^2 = m^2,
Le nombre m est donc pair, m = 2k pour un nombre entier k, d’où
2n^2 = 4k^2
càd.
n^2 = 2k^2.
Il suit que n est également pair, et ainsi m/n n’est pas réduit. Ceci contredit notre hypothèse.
⊓
L’ensemble Q a donc “des trous”. Pour faire de l’analyse, il faut combler les trous, car on veut approximier (des nombres, des fonctions, etc.), et pour ceci on veut prendre des limites. Mais s’il y a des trous, et qu’on prend une limite, on peut tomber dans un trou, càd. la limite ne va pas exister. En “comblant les trous” de Q on peut construire les nombres réels R, ce que nous allons faire plus tard. Ici, nous décrivons R par des axiomes, càd. en terme de ses propriétés.
1.1 Axiomes pour les nombres réels R
Les Axiomes pour R
Les nombres réels sont caractérisés par
1. la structure de corps
1. l’ordre
1. la complétude
2.1. R est un corps
Ceci veut dire que les axiomes suivantes A1, AII et AIII sont satisfaits.
A1 Axiome de l’addition
Il y a une opération
R × R → R, {x, y} ↦ x + y
tel que
1.1. Axiomes pour les nombres réels 
(i)  (càd. + est commutatif)
(ii)  (càd. + est associatif)
(iii) Existence de 0 : Il existe un nombre 0  tel que

(iv) Existence du négatif : Pour chaque nombre  il existe un nombre  tel que
 .
II Axiome de la multiplication
Il y a une opération
 , 
tel que
(i)  (càd. - est commutatif)
(ii)  (càd. - est associatif)
(iii) Existence du un : Il existe un nombre 1  ,  , tel que

(iv) Existence de l’inverse : Pour chaque nombre  ,  , il existe un nombre  tel que
 .
III Distributivité
 (càd. + et  sont compatibles)
Remarque. En général, un ensemble  muni avec deux opérations + et  satisfaisant les axiomes A I–A III est dit un corps. Pour les corps toutes les conséquences de A I–A III prouvées dans la suite sont valides aussi. Ils existent
beaucoup de corps différents de  , par exemple le corps  des nombres rationnels, et le corps  .
Exemple.Le corps le plus petit a deux éléments, le zéro et l’un,
 .
Définissons les opérations  et  par les tableaux suivants :
Ceci veut dire que  ,  ,  ,  , ...
On vérifie facilement que  avec ces opérations satisfait les axiomes AI–AIII, cad. (  ) est un corps. Notons que dans  on a  . Il suit que dans  il est impossible de déduire  des axiomes AI–AIII d’un corps ; on a besoin d’autres axiomes.
Notations. Comme d’habitude, nous écrivons
· pour  :
· 
· pour  :
· 
· pour  :
· 
· pour  :
· 
· 
· 
· 
· 
Voici des conséquences des axiomes AI–AIII :
Proposition 1.(Conséquences de AI)
1.1. Axiomes pour les nombres réels 
	(1)
	Si  , alors  .

	(2)
	Si  , alors  .

	(3)
	Si  , alors  .

	(4)
	 .

	Remarque. Le point (1) dit qu’on peut simplifier  . Le point (2) implique qu’il n’y a qu’un seul nul : Le nul est déjà déterminé par sa propriété dans AI (iii). En fait, si 0’ est un autre nul, alors AI (iii) avec  montre que 0 + 0’ = 0, et donc, avec (2), 0’ = 0. Similairement, le point (3) implique que le négatif d’un nombre est unique et est déterminé par sa propriété dans AI (iv).

	Preuve. (1) Soit  . Grâce à AI et l’hypothèse nous obtenons  .

	(2) Soit  . Alors  . L’énoncé (1) avec  donne  .

	(3) Soit  . Alors  . L’énoncé (1) avec  donne  .

	(4) On a  . En remplaçant  par  et  par  dans (3) nous trouvons  .


Proposition 2. (Conséquences de AI)
	(1)
	Si  et  , alors  .

	(2)
	Si  et  , alors  .

	(3)
	Si  et  , alors  .

	(4)
	Si  , alors  .
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Remarque. Le point (1) dit qu’on peut simplifier x si x ≠ 0. Le point (2) implique l’unicité du un : L’unité est déjà déterminée par sa propriété dans AII (iii). Le point (3) implique l’unicité de l’inverse de x ≠ 0 : L’inverse de x ≠ 0 est déjà déterminé par sa propriété dans AII (iv).
Preuve. (1) Soit x ≠ 0 et xy = xz. Grâce à AII et l’hypothèse nous calculons y = y 1 = 1 y =  y =  =  =  z = z.
(2) Soit x ≠ 0 et xy = x. Alors xy = x 1. En posant z = 1 dans (1) nous trouvons y = 1.
(3) Soit x ≠ 0 et xy = 1. Alors xy = xx^{-1}. En posant z = x^{-1} dans (1) nous trouvons y = x^{-1}.
(4) Soit x ≠ 0. Alors x^{-1} x = 1. En remplaçant x par x^{-1} et y par x dans le point (3) nous trouvons x = (x^{-1})^{-1}.
Proposition 3. (Conséquences de A I – A III)
1. x 0 = 0  .
1. xy = 0  x = 0 ou y = 0.
1. (-x)y = - (xy) = x (-y).
1. (-1)x = -x.
1. (-x)(-y) = xy.
1. x ≠ 0 et y ≠ 0  (xy)^{-1} = x^{-1} y^{-1}.
Remarque. Le nul n’a pas d’inverse multiplicatif. Autrement, 0 0^{-1} = 1. Cependant, par (1), 0 0^{-1} = 0, ce qui contredit 0 ≠ 1 (Axiome A II (iii)).
Preuve. (1) x 0 + x 0  x(0 + 0)  x 0. Proposition 1 (2) alors donne x 0 = 0.
(2) «  » : Soit xy = 0 et x ≠ 0. Alors y =  x y =  (xy) =  0 = 0. «  » : Par (1).
(3) 0 = 0 y = (x + -x) y  x + -x xy + (-x) y. Proposition 1 (3) donne alors (-x) y = - (xy).
(4) C’est un cas particulier de (3) (poser x = 1 dans (3)).
1.1. Axiomes pour les nombres réels 
(5)  où on a utilisé la Proposition 1 (4) pour la dernière égalité.
(6) Soit  et  . En utilisant AII nous calculons







alors  par AII (iv).
AIV L’ordre de 
L’ordre sur  exprime que (quelques fois) on peut dire que , c-à-d que « est plus petit que », ou, géométriquement, que « est à gauche de » :\)
\(\xrightarrow{\text{ligne horizontale avec } x \text{ à gauche de } y}
Axiome AIV
Il existe une relation  dans  avec les propriétés suivantes.\)
1. Pour toute paire \(x, y de nombres réels, exactement une des relations suivantes a lieu :
\)
1. Transitivité : Si  et , alors .
1. Monotonie : Si , alors
· \begin{cases} x + c < y + c & \text{pour tout } c \in \mathbb{R} \ x \cdot c < y \cdot c & \text{pour tout } c < 0 \end{cases}
La monotonie exprime le fait que l’ordre est invariant sous translation de la droite \(\mathbb{R} par n’importe quel nombre  , et aussi sous dilatation par n’importe quel nombre  positif.
Proposition 4. (Conséquences de AIV)
1. 0 < x \Rightarrow (-x) < 0
1. x < 0 \Rightarrow (-x) > 0
1. x < y \Rightarrow 0 < y - x
1. x < y \text{ et } a < 0 \Rightarrow a y < a x
1. x \neq 0 \Rightarrow x x = x^2 > 0
1. x > 0 \Rightarrow \frac{1}{x} > 0
1. 0 < x < y \Rightarrow 0 < \frac{1}{x} < \frac{1}{y}
Remarque. Comme 1 \neq 0 et 1 \cdot 1 = 1, le point (4) implique 1 > 0. Le point (1) nous donne alors -1 < 0. Des points (4) et AIV (ii) il suit que -1 < x^2 pour tout x \in \mathbb{R}. L’axiome AIV (i) montre alors que -1 \neq 0 pour tout x \in \mathbb{R}. \square
Preuve de la Proposition 4 :
1. Soit
0 < x.
Alors la monotonie AIV (iii) donne
0 + (-x) < x + (-x),
càd
-x < 0.
Si
x < 0,
alors
x + (-x) < 0 + (-x),
càd
0 < -x.
1. 
0. Si
x < y,
1.1. Axiomes pour les nombres réels 
la monotonie donne
\)
càd
0 < y - x.
(3) Soit . Alors (2) donne
0 < y - x.
Soit . Alors (1) donne
\((-a) > 0.
La monotonie maintenant donne
0 < 
càd
0 < -((ay) + ax).
En utilisant encore une fois la monotonie, nous concluons
0 + ay < -((ay) + ay + ax),
càd
\)
(4) Soit
\(x > 0.
Alors la monotonie donne

Soit , alors  par le point (1), et donc

Finalement,  d’après la Proposition 3 (5).
(5) Soit  . Alors  d’après AIV (i), et donc  . Il suit de (4) que

1. Les nombres réels
Comme  , la monotonie donne

càd

(6) Soit . La transitivité montre . Selon le point (5) on a\)
\( \frac{1}{x} > 0 et 
La monotonie appliquée à
\)
donne
,

càd

Géométriquement, (6) veut dire : Pour la fonction \( f(t) = \frac{1}{t} sur  on a
Une courbe décroissante passant par les points  et  .
L’ordre sur  a beaucoup de conséquences :
1.1. Axiomes pour les nombres réels 
Proposition 5. (Moyenne arithmétique) Pour  on a
\)
Cela veut dire qu’entre deux nombres réels on peut toujours trouver un autre nombre réel.
Preuve.L’hypothèse  et la monotonie donnent

Comme \(x + x = x(1 + 1) = x2, cela s’écrit
\)
Comme \(1 > 0, nous avons  et alors, avec la transitivité,
\)
□
D’autres règles (voir les TP)
(1)



(2)



(3) \(ab > 0 \Leftrightarrow ou bien les deux facteurs sont > 0 ou bien ils sont < 0
(4)  l’un des facteurs est > 0 et l’autre est < 0\)
□
Le maximum de deux nombres réels \(x, y est

1. Les nombres réels
Définition. La valeur absolue |x| du nombre réel x est le nombre réel non-négatif
|x| := max{x, -x} = < { x si x ≥ 0 -x si x < 0
On voit que
· |x| ≥ 0 et |x| = 0 ⇔ x = 0
· -|x| ≤ x ≤ |x|
· | - x | = |x|
où la dernière affirmation est vraie comme
| - x | = max{-x, -(-x)} = max{-x, x} = max{x, -x} = |x|.
Géométriquement, la valeur absolue est le graphe de la fonction f(x) = |x|.
Le graphique représente la fonction f(x) = |x|, avec une ligne droite passant par l'origine, formant un V, avec les points (-x, |x|), (-1, 1), (1, 1), et x sur l'axe horizontal.
1.1. Axiomes pour les nombres réels 
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Regardons maintenant tous les minorants :
Définition (Infimum de  ).
Soit  un ensemble non-vide et minoré. Un nombre réel  est dit infimumde  si ta les deux propriétés suivantes.
1.  moindre  ,
1. si  moindre  , alors  .
On voit que si l'infimum de  existe, alors il est unique. Intuitivement, l'infimum est “le moindre le plus grand”. On le note inf  . En remplaçant (2) par sa contraposée, nous voyons que  si et seulement si
1.  pour tout  ,
1. si  , alors il existe  tel que .\)
L'infimum inf \(E \subset \mathbb{R} n'appartient pas nécessairement à  . Si inf  , on dit que inf  est le minimumde  , et l'on note min  .
Exemples
1. Pour  on a inf , et  n'a pas de minimum.\)
1. Pour  on a inf .
Notations.
Si \(E \subset \mathbb{R} n'est pas minoré, càd. si pour tout  il existe  tel que , nous écrivons\)
inf \(E = -\infty.
Exemples.
inf  et inf 
Conséquences de A V
Théorème 1.
Pour tout ensemble  non-vide et minoré il existe l'infimum inf  , et
inf 
où  est l'ensemble des minorants de  .
Preuve. Soit  l'ensemble des minorants de  , càd.
 pour tout 
1. Les nombres réels
Par hypothèse sur  , il existe un minorant de  , cad  . Fixons  . Selon la définition de  ,
 pour tout  .
Il suit que  est majoré. Selon  il existe  . Comme  est un majorant de  , la définition de  implique que
 .
C’est vrai pour tout  , cad
 .
Il suit que  satisfait aux conditions
1.  pour tout  ,
1. si  , alors  , car il existe  tel que .\)
Finalement, d’après la définition de inf,
\(s = \sup U = \inf E.
Le théorème est démontré. □
Abréviations (Intervalles dans  )
Pour  avec  nous écrivons\)
	 
	 

	[a, b]
	:= \(  (intervalle fermé)

	(a, b]
	:=  (intervalle demi-ouvert)\)

	[a, b)
	:=  (intervalle demi-ouvert)

	(a, b)
	:=  (intervalle ouvert)


Les nombres \(a, b sont les extrémités de ces intervalles.
Intervalles non-bordés
 := \)
\((a, \infty) := \)
\((-\infty, b] := \)
\((-\infty, b) := \)
\((-\infty, \infty) := 
Remarque. Comme nous verrons, l’Axiome V, le “Principe du Suprémum” pour  , est équivalent aux “Principe de l’emboîtement des intervalles” ou à l’hypothèse que toute suite de Cauchy converge.
Les nombres naturels N ⊂ R
Nous avons caractérisé R par les Axiomes A1–A5. Où sont restés les nombres naturels? Nous savons
1 ∈ R et 1 > 0.
Définition.(nombres entiers, rationnels, irrationnels). Nous posons
Z := (-N) ∪ {0} ∪ N
= {0, ±1, ±2, ±3, ...},
Q := {m/n | m ∈ Z, n ∈ N},
R \ Q := {x ∈ R | x ∉ Q}.
L’ensemble Z est les nombres entiers, Q est les nombres rationnels, et R \ Q est les nombres irrationnels.
Il y a beaucoup de nombres rationnels. C’est une conséquence du Principe d’Archimède :
Proposition 13.
Soit a < b ∈ R. Alors il existe r ∈ Q tel que a < r < b.
Preuve.Nous supposons d’abord que a ≥ 0. Nous cherchons m, n ∈ N tel que a < m/n < b, c-à-d
na < m/n < nb.
Etape 1. D’après le Théorème 2, nous pouvons choisir n si grand que
n(b - a) > 1.
Alors
na < nb - 1.
Etape 2. Choisissons m ∈ N si grand que
m - 1 = max {k ∈ N ∪ {0} | k ≤ na}.
Alors,
m - 1 ≤ na < m.
Il suit que
na < m ≤ na + 1 < (nb - 1) + 1 = nb,
alors na < m < nb.
Supposons maintenant que a < 0. D’après le Théorème 2 il existe l ∈ N tel que l > -a, cad 0 < a + l. Nous trouvons r ∈ Q tel que
a + l < r < b + l.
Avec la monotonie nous concluons
a < r - l < b,
et il est clair que r - l ∈ Q.
Est-ce qu’il existe des nombres irrationnels ?
1.3 Racines, emboîtements des intervalles
Une conséquence simple de la complétude de R est que l’on peut prendre les racines d’un nombre positif. Nous commençons par montrer l’existencedes racines. Leur constructionpar un algorithme sera donnée plus tard.
Proposition 14.(Racine carrée) Soit a > 0. Il existe alors un et un seul nombre réel b > 0 tel que
b^2 = a.
On écrit b = √a = a^{1/2}. Les racines sont toujours positives !
Preuve.Unicité : Soient b_1, b_2 > 0 avec b_1^2 = b_2^2 = a. Supposons que b_1 ≠ b_2. S.p.d.g. nous pouvons supposer que b_1 < b_2. Alors, par monotonie,
a = b_1^2 < b_1 b_2 < b_2^2 = a
ce qui contredit l’Axiome IV.
Existence : Nous savons que dans Q, la racine n’existe pas toujours. Dans la preuve, il faut donc utiliser le suprémum !
L’idée de la preuve est de regarder l’ensemble
E := { x ≥ 0 | x^2 < a}
1.3. Racines,emboîtements des intervalles
et de vérifier que (sup E)^2 = a.
Notons d’abord que 0 ∈ E, d’où E ≠ ∅. De plus, l’ensemble E est majoré par a + 1. En fait, si x ≥ a + 1, alors x^2 > (a + 1)^2 = a^2 + 2a + 1 > 2a > a. D’après l’Axiome V il existe donc le supremum
b := sup E ∈ ℝ. (*)
D’après l’Axiome IV une et une seule des trois affirmations
b^2 < a, b^2 = a, b^2 > a
a lieu. Nous allons exclure b^2 < a et b^2 > a en utilisant (*). On conclura que b^2 = a, comme désiré.
1. Supposons que b^2 < a. Nous allons trouver n ∈ ℕ tel que
b + \frac{1}{n} ∈ E. (**)
Mais b < b + \frac{1}{n}, d’où (**) contredit (*) (car b est le majorant le plus petit de E).
Pour trouver n ∈ ℕ tel que (**), notons que pour tout n ≥ 2 on a \frac{1}{n^2} < \frac{1}{n}.

< 
= b^2 + \frac{1}{n} (2b + 1).
D’après la Proposition 10 et comme a > b^2 nous pouvons choisir n assez grand pour que
.
Alors, par transitivité,

1. Les nombres réels
càd.  .
2. Supposons que  . L’argument est similaire au cas 1 : Nous allons trouver  tel que
 .
Alors  pour tout , d’où\)
 pour tout . (***)
Mais , d’où (***) contredit (*) (car  est le majorant le plus petit de ).
Pour chaque \(n \in \mathbb{N} nous avons  , d’où

 .
D’après la Proposition 10 et comme  nous pouvons choisir  assez grand parce que
.\)
Alors, par transitivité,
\( \left( b - \frac{1}{n} \right)^2 > b^2 - \frac{2b}{n} > b^2 - 2b \frac{(b^2 - a)}{2b} = b^2 - (b^2 - a) = a.
La Proposition 14 est démontrée.
Soit par exemple  . Alors il existe  , mais  , comme on l’a déjà vu.
Conséquence.Le corps  satisfait aux Axiomes A.I–A.IV, mais pas à A.V. Le corps  n’est pas complet ! On voit aussi que les Axiomes A.I–A.V sont indépendants.
1.4 Fini, infini, dénombrable
Théorème 4. 
Corollaire. 
Il y a donc "beaucoup plus" de nombres irrationnels que de nombres rationnels.
Preuve. Si  était dénombrable, alors  serait dénombrable, selon les Propositions 15 et 16.
Preuve du Théorème 4. (Complétude de  , Théorème 3) Supposons, par l'absurde, que  est dénombrable. Nous pouvons donc dénombrer les éléments de  :
	
	=  \)

	L'idée de la preuve est de construire un  tel que  pour tout  .
	

	Choisissons  avec , et regardons l'intervalle fermé  = . Divisons  en trois sous-intervalles fermés de même longueur  :\)
	

	
	

	Soit \(I_1 un de ces trois sous-intervalles avec  :
	

	 .
	

	Divisons maintenant  en trois sous-intervalles fermés de même longueur  . Soit  un de ces trois sous-intervalles avec  :
	

	 ,
	

	etc. Ainsi, nous construisons inductivement un enchaînement d'intervalles  d'intervalles fermés  tel que
	

	(i)  pour tout  ;
	

	(ii)  ;\)
	

	(iii) \(x_n \notin I_n pour tout  .
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D’après le Théorème 3 il existe z ∈ ℝ avec
z ∈ Inpour tout n ∈ ℕ.
Comme xn∉ In, on a z ≠ xnpour tout n ∈ ℕ, càd z ∉ {xk| k ≥ 1} = ℝ.
C’est une contradiction, car z ∈ ℝ.
1.5 Le champ ℂ des nombres complexes
Motivation. Comme 1 ≠ 0 et 1 · 1 = 1, le point (4) de la Proposition 4 implique que 1 > 0. Par (1) de la Proposition 4 nous avons donc −1 < 0. Selon le point (4) de la Proposition 4, nous avons 0 < x2pour tout x ∈ ℝ\{0}, et donc, par la transitivité de l’ordre, −1 < x2pour tout x ∈ ℝ. L’équation
x2+ 1 = 0
ne possède donc pas de solution dans ℝ. Nous allons “étendre” ℝ tel que cette équation possède une solution.
Définition. Un nombre complexe z est un couple z = (x, y) ∈ ℝ × ℝ = ℝ2de nombres réels x, y ∈ ℝ. Etant donnés z = (x, y) ∈ ℝ2et w = (u, v) ∈ ℝ2, nous définissons
z = w ⇔ x = u et y = v.
L’ensemble des nombres complexes est noté
ℂ = {z = (x, y) | x ∈ ℝ, y ∈ ℝ} = ℝ2.
Géométriquement, un nombre complexe z est un point dans le plan :
Définition des opérations + et · : ℂ × ℂ → ℂ
Etant donnés z = (x, y), w = (u, v) ∈ ℝ2nous posons
z + w := (x + u, y + v),
z · w := (xu − yv, xv + yu).
De plus, définitions
· le nul : 0c:= (0, 0)
· l’un : 1c:= (1, 0)
1.5. Le champ C des nombres complexes
	Le plan complexe C


z = (x, y)
z = (x, y)
z = (x, y)
z = (x, y)
z^{-1} := -\frac{x}{x^2 + y^2} - \frac{y}{x^2 + y^2} i
On écrit, de nouveau, z^{-1} := \frac{1}{z}. Ainsi, on a, pour tout z \in \mathbb{C},
z + (-z) = (0, 0) = 0_{\mathbb{C}},
z \cdot \frac{1}{z} = (1, 0) = 1_{\mathbb{C}}.
Avec ces définitions, \mathbb{C} satisfait à tous les axiomes d’un corps \mathbb{A} \mathbb{I} - \mathbb{A} \mathbb{I}I, et donc aussi à toutes les conséquences de \mathbb{A} \mathbb{I} - \mathbb{A} \mathbb{I}I, par exemple aux Propositions 1-3.
Exercice 1.Vérifier que \mathbb{C} est un corps, cad. vérifier les axiomes \mathbb{A} \mathbb{I} - \mathbb{A} \mathbb{I}I.
Exercice 2.Montrer que le corps \mathbb{C} ne satisfais pas l’Axiome IV de l’ordre.
Retrouvons \mathbb{R} ! Nous identifions \mathbb{R} comme sous-ensemble et sous-corps de \mathbb{C} via l’application injective
\varphi : \mathbb{R} \rightarrow \mathbb{C}, \quad x \mapsto (x, 0) \in \mathbb{C}.
1. Les nombres réels
On a alors que



 pour tout 
(où les opérations à gauche sont dans  , et les opérations à droite sont dans  , cad.  préserve les structures algébriques. En fait,



 pour tout 
Convention.Nous identifions donc  avec  et utilisons l’abréviation  . En particulier,  et  . Ainsi, on a pour tout  ,
 ,  ,  .
Définition.L’unité imaginaireest  .
Proposition.L’équation possède une solution.
Preuve. ,
On écrit aussi  .
Avec la convention ci-dessus, on peut écrire



 ,
cad.  avec  .
Le nombre réel  s’appelle la partie réellede  , et  s’appelle la partie imaginairede  .
1.5. Le champ C des nombres complexes
Figure 1.3 - i2= -1.
La représentation z = x + iy d’un nombre complexe par les deux nombres réels est unique : On a x + iy = u + iv si x = u et y = v. L’avantage de cette représentation est qu’on peut calculer comme avec les nombres réels, en utilisant que i2= -1.
Exercice 3.
Mettez sous la forme x + iy les nombres complexes suivants :
· a) 1 + i + 3 + 4i
· b) 1 / (1 + i)
· c) 3 + 4i / 2 - i
· d) (1 + i)k/ (1 - i)
· où k ∈ Z
· e) √i
Définition (Conjugaison C → C).
Le conjugué z̄ de z = x + iy ∈ C est le nombre complexe z̄ := x - iy.
On a donc z = (x, y) ⇔ z̄ = (x, -y), cad l’application z ↦ z̄ correspond à la réflexion du plan R2par rapport à l’axe x.
Proposition (Règles de calcul).
Soient z, w ∈ C. Alors
1. z̄ = z̄
1. z + w̄ = z̄ + w̄
1. z̄ · w̄ = z · w̄
1. z + z̄ = 2Re(z), z - z̄ = 2iIm(z)
1. Si z = x + iy, alors z · z̄ = x2+ y2∈ R≥0
Exercice 4. Démontrer cette proposition.
La valeur absolue du nombre complexe z = x + iy est définie comme la racine |z| := √ z · &bar;z := √ x2+ y2≥ 0.
C’est donc la distance de (x, y) à l’origine (0,0) de ℝ2.
Proposition (Propriétés de la valeur absolue).
Pour l’application C → ℝ, z → |z| on a
	 
	 

	(1) |z| ≥ 0 et |z| = 0 si z = 0
	

	(2) |z · w| = |z| · |w|
	

	(3) |z + w| ≤ |z| + |w|
	

	(4) ||z| - |w|| ≤ |z - w|
	

	(5) |z| = |z|
	

	(6) |Re z| ≤ |z| et |Im z| ≤ |z|
	


Exercice 5. Démontrer cette proposition.
Le point (3) de la proposition s’appelle “Inégalité du triangle”.
Exercice 6. Pourquoi ?
Exercice 7. Soient a = m2+ n2et b = p2+ q2sommes de deux carrés de nombres entiers m, n et p, q. Montrer qu’alors ab est aussi une telle somme.
Exercice 8. Esquisser les ensembles suivants :
· (a) {z ∈ &C; |Re z| ≤ &Im z}
· (b) {z ∈ &C; |z - 1| = |z + 1|}
· (c) {z ∈ &C; |1 < |z - i| ≤ 2}
· (d) {z ∈ &C; |z| ≥ 1, |Re z| ≤ ½, Im z > 0}
Exercice 9.
1. a) Pour z ∈ &C; on a |z - 1| < |z + 1| si Re z > 0.
1. b) Soient a, b, c, d ∈ ℝ avec ad - bc > 0. Soient z, w ∈ &C; tel que w = &frac; az + b; cz + d ≠ 0.
Alors Im w > 0 ↔ Im z > 0.
Chapitre 2
Suites
2.1 Suites de nombres réels, convergence
Proposition 3. Soient  deux suites convergentes,
 et  .
Alors
1. 
1.  pour tout 
1. 
1.  si  pour tout  et 
1. 
1.  pour tout 
1.  pour tout  et  .
Preuve de (4)-(7).
(4) Par l’hypothèse,  et  . Comme  , il existe  tel que
 pour tout  .
Avec l’inégalité du triangle nous estimons  , et donc
 pour tout  .
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Avec ceci nous pouvons estimer
\left| \frac{1}{y_{n}} - \frac{1}{y} \right| = \frac{| y - y_{n} |}{| y | | y_{n} |} \leq \frac{2}{| y |^{2}} | y - y_{n} |
pour tout n ≥ N1.
Soit maintenant ε > 0 donné. Il existe N2tel que
\left| y_{n} - y \right| \leq \varepsilon
pour tout n ≥ N2.
Pour N := max\{N1, N2
\left| \frac{1}{y_{n}} - \frac{1}{y} \right| \leq \frac{2}{| y |^{2}} \varepsilon
pour tout n ≥ N.
(5) suit de \left| x_{n} - x \right| \leq \left| x - x_{n} \right| pour tout n.
(6) Soit xn≥ ynpour tout n. Soit ε > 0 donné. Il existe n ∈ N tel que
x - ε ≤ xn≤ yn≤ y + ε
d’où x ≤ y + 2ε et donc x - y ≤ 2ε. Ceci est vrai pour tout ε > 0, d’où (par la Proposition 1.11) x - y ≤ 0, c àd. x ≤ y.
(7) Soit ε > 0 donné. Il existe N ∈ N tel que
x - ε ≤ xn≤ zn≤ yn≤ y + ε = x + ε
pour tout n ≥ N.
En vue de la monotonie de l’ordre, ceci donne
-ε ≤ zn- x ≤ ε pour tout n ≥ N
càd.
| zn- x | ≤ ε pour tout n ≥ N.
C’est vrai pour tout ε > 0, d’où zn→ x.
2.2 Principes de convergence
Comment peut-on voir qu'une suite converge, sansconnaître la limite ? On a trois principes :
1. Le principe de monotonie
1. Le principe de choix de Bolzano–Weierstrass
1. Le critère de Cauchy
Ces principes sont tous des conséquences de la complétude de  .
Définition (Monotonie)Une suite  est
· monotone croissantesi  pour tout  ,
· strictement monotone croissantesi  pour tout ,\)
· monotone décroissantesi \(a_n \geq a_{n+1} pour tout  ,
· strictement monotone décroissantesi  pour tout  .
Si  est monotone croissante, on a donc
\)
et si \((a_n) est strictement monotone croissante, on a
.\)
Théorème 1 (Principe de monotonie)
1. Soit \((x_n) monotone croissante.
Si l'ensemble  est borné, alors la suite  converge, et
 .
Si  n'est pas borné, alors
 .
1. Soit  monotone décroissante.
Si l'ensemble  est borné, alors la suite  converge, et
 .
Si A n’est pas borné, alors
 .
Preuve. (Axiome V) Par hypothèse, A est majoré, d’où le supremum de A,
x := sup A ∈ ℝ
existe selon l’Axiome V. Nous voulons montrer que
 .
Soit ε > 0 donné. D’après la définition du supremum, il existe  tel que
.\)
Comme la suite \( (x_{n}) est monotone croissante, on a
 pour tout n ≥ N\)
d’où 0 ≤ x - x_{n} < ε pour tout n ≥ N, c’est.  pour tout n ≥ N.
Soit maintenant A non-borné. Comme \( (x_{n}) est monotone croissante, A est minoré par  , et donc n’a pas de majorant. Pour b ∈ ℝ il existe donc N tel que b ≤ x_{N}. Comme  est monotone croissante, il suffit que b ≤ x_{n} pour tout n ≥ N. C’est vrai pour tout b ∈ ℝ, d’où lim  .
Le point 2 est prouvé de manière analogue. □
Exemple. Pour  on a
 .
2.2. Principes de convergence
Le nombre d’Euler e
Pour illustrer le Principe de Monotonie nous considérons les deux suites (xn)n≥1et (yn)n≥1définies par
xn= \left( 1 + \frac{1}{n} \right)^n , \quad yn= 1 + \frac{1}{1!} + \frac{1}{2!} + \cdots + \frac{1}{n!} = \sum_{k=0}^{n} \frac{1}{k!}
où pour rappel 0! = 1.
Proposition 7. Les suites (xn) et (yn) sont convergentes et possèdent la même limite, qui est désignée par e,
limn→∞\left( 1 + \frac{1}{n} \right)^n = \limn→∞\sum_{k=0}^{n} \frac{1}{k!} = : e.
De plus,
0 < e - yn< \frac{1}{n!n} \quad pour tout n ∈ ℕ
et e est irrationnel.
Remarque. En fait, e = 2.7182 ...
Preuve. Nous commençons avec le
Lemme
(i) yn< yn+1< 3 si n ≥ 1 ,
(ii) xn< xn+1si n ≥ 1 ,
(iii) xn< ynsi n ≥ 2 .
Preuve. (i) yn< yn+1est clair, et
yn= 1 + \frac{1}{1!} + \frac{1}{2!} + \cdots + \frac{1}{1 \cdot 2 \cdot 3 \cdots n}
< 1 + \left( 1 + \frac{1}{2} + \frac{1}{2^2} + \cdots + \frac{1}{2^{n-1}} \right)
= 1 + \frac{1 - (\frac{1}{2})^n}{1 - \frac{1}{2}} = 1 + \frac{1 - (\frac{1}{2})^n}{\frac{1}{2}} = 1 + 2 \left( 1 - (\frac{1}{2})^n \right) < 3.
(ii) Pour n \geq 2, nous trouvons par l’inégalité de Bernoulli que

= 
= 
>  .
(iii) Pour 1 \leq k \leq n et n \geq 2 nous avons

= 
< 
Avec le développement binomial nous trouvons alors
.\)
et le lemme est démontré.
Les suites \((x_{n}) et  sont alors bornées et monotones, et donc convergentes. Selon (iii) et la Proposition 3,
 .
Afin de montrer  , nous fixons m \in \mathbb{N} et estimons pour n > m,

> 
= 1 + \sum_{k=1}^{m} \frac{1}{k!} \left(1 - \frac{1}{n}\right) \left(1 - \frac{2}{n}\right) \cdots \left(1 - \frac{k-1}{n}\right) = z_{n}\).
2.3 Principes de convergence
Comme lim_{n \to \infty} (1 - \frac{u}{n}) = 1 pour tout a\in \mathbb{R}, la Proposition 3 montre encore que x = lim x_{n} \geq lim z_{n} = \sum_{k=0}^{n} \frac{1}{k!} = y_{m}. C’est vrai pour tout m \geq 2. D’après la Proposition 3 (6) nous avons donc x > lim y_{m} = y. En tout, nous trouvons x \leq y \leq x et donc x = y.
Pour prouver e - y_{n} < \frac{1}{n!} pour tout n, nous calculons
	 
	 
	 

	y_{n+m} - y_{n} =
	\sum_{k=0}^{n+m} \frac{1}{k!} - \sum_{k=0}^{n} \frac{1}{k!} =
	\sum_{k=n+1}^{n+m} \frac{1}{k!} \leq \frac{1}{(n+1)!} \sum_{k=0}^{m-1} \frac{1}{(n+1)^{k}}

	 
	= \frac{1}{(n+1)!} \frac{1 - \frac{1}{(n+2)^{m}}}{1 - \frac{1}{n+2}} \leq \frac{1}{(n+1)!} \frac{1}{1 - \frac{1}{(n+2)^{m}}} \leq \frac{1}{(n+1)!} \frac{n+2}{n+1}.
	


Comme lim_{n \to \infty} y_{n+m} = e, la Proposition 3 montre que
0 < e - y_{n} \leq \frac{1}{(n+1)!} \frac{n+2}{n+1} = \frac{1}{n!} \frac{n+2}{n+1}^{2} < \frac{1}{n!} pour tout n \in \mathbb{N}.
Les inégalités e - y_{n} < \frac{1}{n!} impliquent que e est irrationnel. En effet, supposons que e = \frac{m}{n} avec n \geq 1. En multipliant avec n! nous obtenons
0 < n! \left(\frac{m}{n} - y_{n}\right) < \frac{1}{n}.
Comme n! \left(\frac{m}{n} - y_{n}\right) est un nombre naturel, ceci contredit le fait qu’il n’y a pas de nombre naturel entre 0 et 1.
2.3 Quelques exemples simples
Proposition 8,
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1. Si x ∈ ℝ, alors
limn→∞xn/ n! = 0.
1. Si a > 0, alors
limn→∞1 / an= 0.
1. Si x > 0, alors
limn→∞n√x= 1.
1. limn→∞n√n= 1.
1. limn→∞n√n! = ∞.
1. limn→∞n / √n! = e.
1. Si a > 0 et x > 0, alors
limn→∞na(1 / (1 + x))n= 0.
Preuve. 1. Si |x| ≤ 1, nous estimons
|xn/ n!| = |x|n/ n! ≤ 1 / n! ≤ 1 / n! pour tout n ∈ ℕ, d’où limn→∞xn/ n! = 0.
Si |x| > 1, nous choisissons N ∈ ℕ tel que N < |x| < N + 1. Pour n > N nous estimons
|xn/ n!| = |x|n/ n! = |x| / 1 · |x| / 2 · ... · |x| / N · |x| / (N + 1) · ... · |x| / n < |x|N/ N! · 1 · ... · 1 · |x| / n < |x|N/ N! · 1 / n < |x|N/ N! · 1 / n = |x|N+1/ N! · 1 / n = K1 / npour tout n > N.
Comme limn→∞1 / n = 0, nous avons limn→∞K1 / n= 1, et donc limn→∞xn/ n! = 0.
2. Soit ε > 0 donné. D’après le Principe d’Archimède il existe un N ∈ ℕ tel que
N ≥ (1 / ε)1 / a
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Remarque. Le Critére de Cauchy implique le Principe d’emboitement d’in-
tervalles.

Preuve. Soit ([an, bn|)n>1 un emboitement d'intervalles. Alors (an) est Cau-
chy. En fait, il existe N € N tel que

by —ay < e
Comme am,an € [an, by] pour tout m,n > N, on a donc
lam —az| < & pour tout m,n> N.

Par le Critére de Cauchy, la limite lim a, = s existe. Comme la suite (a,)
est monotone croissante, on a a, < s pour tout n, et comme a; < b, pour

tout k,m, on a s < b, pour tout n, selon la Proposition 3 (6). Il suit que

s € (fan bl

n>1

Comme b, — ag — 0, il est également clair que s est le seul point dans cette
intersection, cid. s = (V3 [an, ba. o
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2.4 Valeur d’accumulation d’une suite, liminf,
lim sup

Commencons avec un exemple, et regardons la suite (z,)nz1 définie par

On voit que

Définition. Un point z € R est une valeur d’accumulation de la suite
() si pour tout = > 0 il existe une infinité de nombres naturels n € N tel
que

[ta—a] < &

Exemples :

1. La suite 2 = n ne posséde aucune valeur d’accumulation.

2. Une suite convergente posside une unique valeur d’accumulation, sa
limite.

3. Une suite peut posséder beaucoup de valeur d’accumulation. Par exemple,
une suite surjective N — Q posséde fout nombre réel r € R comme
valeur d’accumulation car tout interval ouvert contient une infinité de
nombres rationels selon la Proposition L.13.

Proposition 8. Un point z € R est une valeur d’accumulation de la suite
(Tn)nz1 ssi T est la limite d'une sous suite (Tn, ko1

Preuve. “=” : Soit z € R une valeur d’accumulation de lIa suite (z4)a:-
Pour tout & > 0 le sous ensemble

{neN| |, —1| <<}
de N est done infini. Choisissons d’abord = = 1. Il existe done un ny € N tel

que
2n, — | < 1
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Choisissons maintenant = = 1. Comme z est une valeur d’accumulation, il
existe ny >, tel que

foms =l < 3
T, — 7] < 5.

2

o
Choisissons maintenant = = 1, etc. En continuant ainsi nous trouvons une
suite ny < np <73 < ... dans N tel que
1
[rn, =2l < 7 pour tout k> 1,
ot z = lim z,,.
=y

“<=" est évident. o

Suites bornées

Soit (zx) une suite bornée, cad Pensemble {z | n > 1} est borné. D'aprés le
Théoréme de Bolzano-Weierstrass, (z,) possede an moins une valeur d’aceu-
mulation. Une suite bornée posséde done deux valeurs d’accumulation dis-
tinguées, la “plus petite” et “la plus grande”. Pour étre précis, considérons
Vensemble

A = {z€R| z est une valeur d’accumulation de (za)}

- {, = Jim ne, ol () est une sous suite de (z,.)}

ol on a utilisé la Proposition 8. Comme A est borné, il existent selon I’Axiome V

ai=infA <supA:

D'aprés les définitions de Pinfimum, du suprémum et de la valeur d'accumu-
lation, nous avons a € A et b€ A, d'ott

=max A.

a=minA,

Nous nottons la plus petite et la plus grande valeur d’accumulation d’une
suite bornée (z,) par

a = liminf{zs [n>1} = lime, (“limite inférieure”),

b= limsup{z,|n>1} = mz, (“limite supéricure”).
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Voici une définition plus technique de lim nf et limsup.

Proposition 9. Soit (zs) une suite bornée. Alors
(i) e=liminfz, <= a € R et pour tout = >0 on a
1. {n €N |z, <a—=z} est fini ou vide,
2. {neN|z, <a+e} est infini.
(i) b=limsupz, <= be R et pout tout = >0 on a
1. {neN |z, >b—c} est infini,
2. {n €N |z, >b+c} est fini ou vide.

Preuve. (Définitions)

(i) “=” : Par définition, a € R. Soit = > 0. Selon la définition de la valeur
daccumulation, Pensemble {n € N | |z, —a| < e} est infini, d’oit le point 2.
Supposons que 1. n'a pas liew, cad il existe = > 0 tel que {n € N | < a—z}
est infini. D'aprés le Théoréme de Bolzano- Weierstrass il existe une sous suite
convergente (zn, )i tel que T, < a— . Comme & = lim o0 T, < a—e, il
suit que = est une valeur d’accumulation plus petite que a, ce qui contredit
a=limz,

“<7 : Par hypothése sur (z,,) et d’aprés 2., lensemble {n € N |z, < a+2}
est infini et {z, | T, < a+c} est borné. Par le Théoréme de Bolzano
‘Weierstrass il existe donc une sous suite convergente (z,,) de (zn) tel que
limy o, 7, < @+ . Clest vrai pour tout & > 0, d'ott limr,, < a. De plus, le
point 1. montre que lim 7, > a.

(ii) est démontré de méme maniére. o

Proposition 10. Soit (zx) une suite bornée. Alors

1

Tp =limz, <= (z,) converge.
Dans ce cas, © = limz,, = limz,, = imz,.

Preuve. (Proposition 9)

“=” : On a toujours

limz, < b:=lmz,.
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Soit & > 0. La Proposition 9 montre qu'il existe un N € N tel que
a—z <1z, <bte pourtoutn>N.
Sia=b il suit que
a—c <z, <ate pourtoutn> N,

cad |z, —al <  pour tout n > N. Clest vrai pour tout & > 0, d'oit a = lim z,,.

“£ : i a < b, nous trouvons deux sous suites de (za) qui convergent vers
les limites a et b différentes, d'oit (z,) ne converge pas. o

Proposition 11. Soient (z,) et (y) des suites bornées. S'il eziste N € N
tel que
Tn < ya  pour toutn > N,

alors -
limz, <limy, et Tmz,<lmy,.

Preuve. Sous P'hypothese de la proposition, supposons que
limz, > limy,.
Choisissons z € R tel que
limz, > 2 > limy,.
D'aprés la Proposition 9, nous trouvons N; € N tel que

Z,>z  pour tout n> Ny,

Yn<z  pour une infinité de n,

doit 7 > ya pour une infinité de n, ce qui contredit Ihypothse.

L’inégalité lim z,, < limy, est démontrée de méme maniére. o
Théoreme 1. Soit (a,) une suite tel que an > 0 pour tout n et tel que les

deuz suites
(‘L“’) (3@

an
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sont bornées. Alors

i (2222) <t (9) < (o) < o (2221,
an an
Preuve. (Définitions, Propositions 9, 10, 11)
T deusitimie indpalité est dlaire. Nous:proivons Ja:premisre ;s Ia trotsisinie et
démontrée de méme maniére.
lim (T') Comme % > 0 pour tout n, on aa > 0. Sia =0,

Pinégalité a < lim {/@y est évidente. Soit donc a > 0. Choissions = € (0,a).
D'aprés la Proposition 9 (i) il existe N € N tel que

Posons a :

a
2kl 5 4 — e pour tout k> N.
ax

Pour n > N nous trouvons donc

G _ ONi1ON42 0N

ay Ay ani1angs

> (a—e'(a—9) Nay
Ve > (a—o)¥/(a—a) Vay.

Comme limy, o, {/Z = 1 pour tout z > 0 selon la Proposition 7.3, il suit que

lim (¢a) > lim(a—<) /(@2 Vax
lim(a — ) ¥/(a—2) Nax

= a—=.

Clest vrai pour tout € (0,a) d'oit lim (/a,) > a. o

Conséquence. Dans la situation du Théoréme 1,
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Pour illustrer ce résultat, prouvons la Proposition 8.6. Posons a,

[t (Hl) e
Gn n" n

ni

On voit facilement que la suite ({/an) =

) est bornde; et donc
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Séries

3.1 Critéres de convergence

Proposition 1. Une série absolument convergente Y z; converge, et

Preuve. (Critére de Cauchy) Soit & > 0. Comme la série 3" |a;| converge, il

existe N € N tel que

> lasl <= pourtout m>n>N

selon le Théoréme 1. Avec I'inégalité du triangle nous obtenons

e

Ceci est vrai pour tout = > 0, d’oit la série 3.z; converge selon le Théoréme 1.

5 z,\gs pour tout m >n > N.

Ik

Posons sn

>~ 2. Par Vinégalité du triangle, [sa| <Y |z;|. Les régles de
= =1
calcul (de la Proposition I1.3) appliqués aux suites (sa) et (|sa]) donnent

| T 5,

= lim |5, < lim Y|
=
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3.2 Addition, multiplication, réarrangements
des séries

Voici une conséquence des régles de caleul.

Proposition 6. Si les séries S ay et 3% by convergent, alors
S antby = Y ant+d ba
= = =

im,. B /\ia“ VAER
= =

Preuve. (Prop. 1L.3) Pour A, i= Y1 ay et B, i= 1 by nous avons

An+ By =Y (ax+b).

=1

Comme lim A, = 5 g ax et lim B, = 5= by, nous obtenons

Me

(ak+b) = lim (An+ Ba) = lim A+ lim By = > ae+ Y be

e = =

La seconde affirmation est prouvée de méme maniére. o

On voit donc qu'on peut ajouter deux séries convergentes terme par
terme; la série ainsi obtenue converge vers la somme des deux séries. Remar-
quons aussi que la Proposition 6 dit que 'ensemble des séries convergentes
forme un espace vectoriel sur R.

Multiplier deux séries est plus subtil!

Définition. Soient Y5 a, et 35 by deux séries. La série Y25 ¢, définie
par
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est le produit de Cauchy des deux séries.

Cette définition ne dit rien sur la convergence de 37 ¢, ! Pour motiver
la définition, écrivons formellement deux séries de puissances 3 a 2" et
2 ) baz" et effectuons la multiplication comme s'il s’agissait de polynémes :
(a0 + a7+ asz® + azz® + ... ) - (o + by + byr® + by +...)
aobo + (aobs + arbo) = + (aobs + aiby + asbo) 2 + ...
@ + az+ ozt 4.

Proposition 7. Supposons que

1. )" ay converge absolument,

n=0

2. )" an converge vers A,

n=0

3. " by converge vers B.

n=o

Alors Y ¢, converge vers AB ;

cad le produit de Cauchy de deux séries convergentes converge, et converge
vers la valeur attendue, si au moins une des deux séries converge absolument.

Preuve. Nous notons

A,.:zn:ak, B,,:zn:bk. Cn:z":ck, Bu=B.—B
= = =

et calculons

Gy = agho + (aghy + aibo) + -+ + (agbn + arbp_y + - - - + anby)
= aBy+aBui+---+anBy
= ao(B+fn) +a1(B + Bur) +--- +an(B + fo)
= AnB+aofn+aiBu1 +--- + anfo.
Définissons
@By + @Bt + -+ anfo.
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Nous voulons montrer que Cy, — AB. Comme A, B — AB par hypothése, il
reste & montrer que
)

Nous savons que

a) D laal

b) an—0 par Phypothése 2,

a€R  par lhypothése 1,

¢) Ba—0 par I'hypothése 3.
Soit & > 0 donné. Tl existe N € N tel que 5] < £ pour tout n > N d’aprés c).
Pour n> N on a done

Il < 1Boan + -+ + Bnan_n| + |Bns16n-n-1 + - + Baaol
Non_t

< |otn+ oo+ Byannl+e Y il
=
< |Boan+ -+ + Bnan_n| + e

oit & Ia fin on a utilisé a). Pour N fixé on a d’aprés b) que le premier terme
tend vers 0 & la limite i — c0. On trouve donc un N, > N tel que

[yal < s+ = (1+a)e  pour tout n > N,

Clest vrai pour tout = > 0, d'oft 7, — 0, et donc Cy, — AB. o

Attention : L’hypothése quune des deux séries converge absolument est
importante. Par exemple, la série

o (DF 1
z:: T+1 717%

=

converge, ne converge pas absolument, et son produit de Cauchy avec elle-
méme diverge (voir les exercices).

Application : L'identité fonctionelle de la fonction exponentielle
Rappelons que pour tout & € R la série

P )

n=0
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converge absolument, et que la fonction
exp: R R, > exp()

est appellée la fonction exponentielle.

Théoreme 3. [exp(x) exp(y) — exp(z +y)| ¥,y R

Preuve. (Prop. 7) Nous savons que

(@) = 35

o

Y et exmpy) =
]

n=0

L= ;b"’

Ces deux séries convergent absolument, d'oit (selon la Prop. 7),

exp(z)exp(®) = Y ca
=

en vertu du développement binomial. Nous trouvons done que

S = ) = el ty).
n=0 c

n=0

Conséquences. Il suit que 1 = exp(0) = exp(z —z) = exp(z) exp(—z), d'oit

exp(z) #0 pourtoutz€R et exp(—z)

1
expl
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Comme exp(z) > 0 pour z > 0, nous voyons qu'en effet
exp(z) >0 pour tout € R.

Rappelons que le nombre de Euler e est défini par

1. % 1
exp(l):1+—|+§+§+...

Inductivement, on voit que exp(z;+Ty-+ - +7,) = exp(z1) exp(ts) ... exp(zn)
pour tous a1, 7s, ..., ¥n € R. Comme exp(1) = e, il suit que pour tout n € N,

exp(n) = e-

Soit maintenant p = £ € Q, avec m € N. Alors

(exp(p))™ = exp(mp) = exp(

dme

En prenant la m™™ racine,

Tl suit que pour tout r € Q,

Nous avons motivé la

Définition. Pour tout nombre réel = € R,

Reéarrangements des séries

Nous nous intéressons maintenant aux réarrangements des séries. Soit (a;);>1
une suite, et soit 3, a; = (Z;‘:,a,)"2l la série associée. Prenons une
bijection 7: N — N, et regardons la suite (b;);>1 définie par
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Définition. La série associée
b= am = (Zﬂ«m)
=1 = r=

est un réarrangement de la série )

>1

1

Proposition 8. Supposons que la série Y-, a; converge absolument. Alors
pour toute bijection T: N — N la série 3o ar(; converge absohument, et

Z“fm
=t

>

Preuve. (Critére de Cauchy)

Soit = > 0. Comme 3 |ay| converge, il existe, d’aprés le Critére de Cauchy,
un N €N tel que

> lasl <= pour tout m >n > N. (3.1)

=1

Comme 7 est bijective, il existe un K & N tel que () > N pour tout k > K,
doit

> Jar| < & pour tout m >n > K.

77| converge.

Le Critére de Cauchy implique done que Y25

Notons

e >
=

Comme 7 est bijective, il existe pour tout k € N un unique ni € N tel que
k = 7(n). Posons

N

max{m | 1<k <N}

Alors

{1,2,...,N} c {7(1),7(2),....7(No)} .
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Sin > Noetn > N, la différence s, — s} ne contient aucun des termes
1,03, a, car ils se simplifient. Avec (3.1) et Pinégalité triangulaire nous
obtenons alors

|sp —sh| < & pour tout n > Ny := max{No, N}.

Comme lim s, = s par hypothése, nous trouvons Ny > N; tel que

[sn=sl < Isn—snl+|sn—
< e+e=2: pour tout n > Na.
C’est vrai pour tout & > 0, d’ol lim s}, = s. o

L'hypothése que la série converge absolument est & nouveau importante :

Proposition 9. (Riemann) Supposons que 3, a, converge, mais que 3, |an|
diverge, et choisissons deuz nombres réels a < B. Il existe alors un réarran-

sh = D arg)
=

gement

tel que
lims, = a, Tims), = f.

En particulier, pour & = 3 on obtient un réarrangement qui converge vers a.

Preuve. On va d’abord voir que la série 3" a des parties positives des termes
de 3" a, (cad. la série obtenue en remplacant a, par a, si a, > 0 et par 0 si
an < 0) et lasérie 3" a;; des parties négatives des termes de Y an sont toutes
deux divergentes. En effet, comme ¥ a, converge et que

an = aj +ag,

les deux séries 3 a;; et 3" a;, doivent soit toutes deux converger, soit toutes
deux diverger. Si elles convergent, alors, comme

Ia série donnée 3 a, est absolument convergente, ce qui a été exclu.
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On commence par prendre dans la série Y ay, dans ordre ob ils se
présentent, le plus petit nombre de termes > 0 de facon & obtenir, en som-
mant, une somme > 3. Puis, on prend dans la série 3 an, dans lordre oit
ils se présentent, le plus petit nombre de termes < 0 de facon & obtenir,
en sommant avec les termes déja choisis, une somme < a. Puis on prend
dans la série ) a,, parmi les termes non encore choisis et toujours dans
Tordre of ils se présentent, le plus petit nombre de termes > 0 de facon &, en
sommant avec les termes déja choisis, obtenir une somme > 8. Et ainsi de
suite. Cette opération est toujours possible puisque les sommes partielles de
la série Y a;t (resp. 3 a;) deviennent arbitrairement grandes (resp. grandes
négatives). On construit de la sorte un réarrangement de la série donnée pour
lequel, clairement, si (s}, s, ...) en est la suite des sommes partielles,

<a et Ims,>f

Considérons maintenant, dans la contruction précédente, une étape ol
Ton vient de choisir des termes > 0, diSons @y (), Grps1)s - - Gr(q) avee 7(p) <
7(p+1) < -+- < 7(g) de fagon & obtenir une somme partielle s' > 3. Comme
on a choisi tout juste le nombre de termes > 0 nécessaires pour obtenir une
somme > , on a

s —arg <8
cd. §' < f+ay (). Comme le terme général de la série donnée tend vers zéro,
on déduit que
Fms, =8
(¢est un bon exercice de formaliser ce dernier point dans le langage des
&,N....). On verrait de méme que

lim &, = a.

o

Tl est donc possible, en partant d’une série de nombres réels convergente
mais non absolument convergente, de réarranger ses termes de telle sorte &
Ia rendre divergente, ou convergente vers n'importe quel nombre réel donné
A priori.
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3.3 La droite de nombres réels étendue

Dans la suite, il sera convenable d’élargir la droite de nombres réels R.

Définition. La droite de nombres réels élargie R consiste en les nombres
réels R et deux symboles +o00 et —00 ©

R = RU{+oo} U{—o0}.

Iei, +00 et —co ne sont pas de nombres réels! On éerit souvent oo au lien
de +o0.

Nous définissons I'ordre sur R par
—00 < < +oo pour tout z € R,

et dans R nous gardons V'ordre originel.

L'ensemble R ne forme pas un corps. Les opérations + et - sont étendues
partiellement sur R via les conventions suivantes

1. Pour z € R nous posons

T +o00 oo siz>—0o0
T —o00 —oo siz<oo
oo siz>0

To00 = h
—o0 siz <0
—o0 siz>0

z(—00) = !
oo siz <0

oo siz>0

—oo siz<0.
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Les opérations ainsi définies sont commutatives. En particulier, nous avons
les itentités suivantes :

00+00 = 00
—o—00 = —o0
x-00 = o
(—o0) -0 = -

(=00) - (-o0) =
Les expressions suivantes ne sont pas défnies !
+oo0 +oo0 0 oo

w-oo, 0-(kor), T2, X9 20

L’avantage de cette construction est que co majore tout sous ensemble de R.
Ainsi, tout sous ensemble non-vide £ posséde un plus petit majorant dans
R, cad le suprémum sup E € R existe. Pareillement, Tim a € R et lim a, € R
existent pour toute suite (a,).

Par exemple, un ensemble non-vide £ C R est majoré ssi sup E < 00 (cad
sup E € R), et E C R n'est pas majoré ssi sup F = o0 € R.

De méme, un ensemble non-vide £ C R est minoré ssi inf £ > —oo (cad
inf £ €R), et £ C R nest pas minoré ssi inf £ = —o0 € R.

3.4 Séries de puissances

Les séries de puissances sont des séries spéciales.

Définition. Soit (a,)nso une suite, et soit = € R. La série

est la série de puissances au point x avec comme coefficients (an)nzo-

n>0

-elle ?

Question. Pour quels & € R la série converge-

Théoreme 4. Considérons la série de puissances Y50 ana™ et posons

Tm o] e B R:= L.

a

a
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az™ converge absolument,
2 j2] >R = T2 ana® diverge,
3. [s]= R : pas d’information.

Preuve. (R-test) Soit = € R. Alors

Tow §/faullof = Ton |/ faal = Jel,

ot la série de puissances converge si || < R et diverge si |z > R selon le
R-test. o

divergence convergence ?

R 0 13

divergence

Exemples.

n=0

a lim s =0,  R=oo
Ia série de puissances converge ¥z € R

ml=1, R=1
convergence absolue pour || < 1 et divergence pour [a| > 1
nous savons que la série diverge pour & = —1 et pour 7 = 1

pour |z] < 1 nous connaissons la limite : 32" =
=

a=Tm gz
convergen
pour z
pour z

- pour || < 1 et divergence pour |¢| > 1
—1 la série converge (Leibniz)
elle diverge (série harmonique)
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a=Tm ¢ =lmn=oc0, R=0
convergence uniquement pour z = 0, et divergence pour z # 0

5. Z#z" avec k € {2,3,4...}
=

X
- - IR Ry L -

— o= (imgs) =1 R=1
convergence pour || < 1 et divergence pour [z] > 1
pour = —1 et z = 1 la série converge o

a=

Les régles de caleul se réécrivent pour ces séries spéciales :

Proposition 10. Supposons que les rayons de convergence des deuz séries
de puissances Y ana™ et o bua™ sont Ry et Ry, et que

[z < R = min{Ry, Ry}

Alors

S (an+ba)a" = gu,.zugm",
~ (S) (Er). o

k=0

Remarque. Les rayons de convergence des séries de puissances i gauche
peuvent bien sir étre > R.

Preuve. (Propositions 6 et 7) Pour |z| < R les deux séries - anz™ et Y buz™
convergent absolument. =]

La fonction associée a une série de puissances

Pour une série de puissances donné Y~ aya” de rayon de convergence R > 0,
nous définissons la fonction

[:(—R,R) =R,
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Le domaine de f est Vintervalle owvert (—R, R) = {z € R | [z] < R}, et f(x)
West pas définie pour [z] > R.

Proposition 11. Soient Y anz™ et R et f comme en haut. Pour tout r €
(0,R) ona

1 |f@) = Eioae’| < T2 lagl? Viz| <7 et Vo
2. Il eiste une constante M = M(r) telle que

[f@)] <M Viz|<r.

3. Il eziste une constante L, = L(r) telle que

/(@) =S| < Llz—y| Yzl |yl <7

Remarques. a) Le point 1. implique que

) s (% \a,w) —o,

nt1

f(z) = ae?
=

lim { sup
70 \lalsr

cid les polynomes -7y a;a convergent, “uniformément” sur {|z| < r} vers
Ia fonction f (ce qui impliquera que f est "lisse”).

b) ad 2. et 3. : Pourquoi “[z| < r < R” mais pas ¢

| <R"?

Parce qu'autremement, les énoncés dans 2. et 3. sont faux :
Soit, par exemple, f(z) = Y2y’ = ks avec [¢| < 1= R.

Pourz:=1—1ona

fan) = f(0-3) = 7051

D'aprés “Archiméde” il n'existe donc pas de M € R tel que f(z,) < M pour
tout n. De méme, le point 3. n'est pas vrai pour “zl,[y| < B o

Preuve de la Proposition 1.
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-

=
G
i
™
2
T
A [}
e
3
o

A
Mz
&
E

A

8

2.1@)| = [Yae?| < laslr?
= =

3. Nous calculons

n-2

(z—y) (= +

Si |z < et |y| < r nous trouvons donc

lz" — 4" < |z —y|nr

Y+ 2" oy )

67
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Avec la Proposition 10 il suit que

@) =) = |> an(="—y")
p=4
< Y fanlle” — v
=
=

[z =yl Y lan|nr
=

b ”
Y lonlnr

—L(r)

—ylL(r),

oit (1) < 00, car {/7i — 1 et done les deux séries 3% o anna™ et Y o ana™
possedent le méme rayon de convergence. o
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Suites et séries complexes

Rappelons du Chapitre L5 que C est le champ des nombres complexes
s+, rweR
La valeur absolue |2 > 0 de = =z +iy € C est donnée par

@ +y

et ona
max{lz], [yl} < |z| < |o] +]yl-

La distance d(z, w)
par

—w| entre z = z-+iy et w = u-+iv est donc donnée

|z—wf = (z—u)?+ (@ —v)%
Pour la valeur absolue et la distance I'inégalité triangulaire est valide. La
distance est la distance Euclidienne des point z,w € R2

Lensemble
Br(w) = {z€C||z—w| < R}

est le disque “ouvert” de centre w et de rayon R. Son bord

{z€C||z—w|= R}

n’appartient pas & Bp(w)

Une suite complexe est une application N — C, 1+ z,. Nous écrivons
(z)nz1 ou  (zn).

69
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y=Imz

z=Rez

FIGURE 4.1 - Le disque Bg(w) de centre w et de rayon R.
Définition. La suite (z,) converge dans C s'il existe z € C avec la propriété
suivante : Pour tout nombre réel £ > 0 il existe N = N: € N tel que

|zm—2| < e pour tout n > N.
Dans ce cas, on éerit
mz=2 ou moz
Le nombre complexe z est la limite. Il est unique. En effet, supposons que
m—z et zm—w dansC.
Soit = > 0. En vertu de Pinégalité triangulaire,
|Jz—w| < |z—za|+ |z —w| < = pour tout n > N

si N est suffisament grand. Cest vrai pour tout & > 0, d'oit
z=w.

Proposition 1. Soit (2n)n>1 une suite compleze, et zn = Tn + iyn. Alors

: lima, =z dans R,
lim 2 =

W dans C
oy dans © = {]jmy,,:y dans R

Preuve. Clest une conséquence de

max{|z, — 2|, [yn —yll} < |20 — 2] < |20 — 2]+ v —yl-
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Définition. Une suite (z,) est dite suite de Cauchy dans C si pour tout
2> 0l existe un N € N tel que

|20 — 2m| < € pour tout n,m > N.
Proposition 2. Soit (zu) une suite compleze, et zn = zu + iyn. Alors

(2n) est une suite de Cauchy dans C
<= (2n) et (ya) sont des suites de Cauchy dans R.

Preuve. Clest une conséquence de

max{|zn — Zm|, [tn —ym|} < |zm —2zm| < |20 — Tm| + [Yn — Ym|-

o

Théoréme 1. (Critére de Cauchy dans C) Une suite (z,) dans C converge
si est seulement si elle est de Cauchy.

Preuve. (Complétude de R) Clest une conséquence des Propositions 1 et 2
et du Théoréme IL. 3 (le Critére de Cauchy dans R). o

Proposition 3. (Régles de calcul)

Soient (zu) et (wy) des suites convergentes dans C,
oz wn—w.

Alors
1ozp+tw, > z+w
Zntn = 2w
Bz osiw#0
Jzal = 121

o e

o Z
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Prewve. La preuve des points 1. 4. est mot par mot la méme que celle
pour R, comme la prenve pour R n’a utilsé que les axiomes d’un champ et
Tinégalité triangulaire pour la valeur absolue et la distance. Le point 5. suit
de |2, —Z| = |20 — 2| a

Définition. Soit (a)nz0 une suite dans C. La suite spéciale (sq)azo dans €

définie par
Sn = Zn]. n>0,
s

est appelée la série associée. Nous écrivons Y5 an. La séri
C est dite absolument convergente si la série réelle

i: lan]

converge dans R.
Les séries absolument convergentes dans C sont convergentes  la preuve est
identique & celle de la Proposition II1. 1 et utilise le Critére de Cauchy.

Le Test de la Racine et le Test du Quotien sont également vrais, et sont

prouvés comme pour R.

Proposition 4. (R-test)
Considérons la série Y°° a, dans C, et posons a =

La<l = 3 |an converge,
2. a>1 = Y ay diverge,
3. a=1 :pas d’information.

Dkndiion, Soi (disn wee svile dans €, of solfx & € T dhiie
S = (ka)
= &

est la série de puissances au point = avec comme cocfficients (an)uso-

n0

Théoréme 2. Considérons la série de puissances Y5 anz" dans C et po-

sons
Tm el cB R
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1|7l <R = Y au2" converge absolument,
=
2 o >R = ) au" diverge,

n=0

3. |zl=R : pas d’information.

Le “nombre” R € R est le rayon de convergence de la série de puissances

no 2"

Tmz

Rez

divergence

Pour une série de puissances donné ¥ a,2" de rayon de convergence R > 0
nous définissons la fonction

J:Br(0) > C, 2o lim Y@t = Y ans" = f(2).
naad=r} n=0
Le domaine de f est le disque ouvert
Bg(0) == {z€C||2| < R}
de rayon R et centre 0. Le cercle de bord n’appartient pas & Bg(0), et f(2)
West pas définie pour |2| > R.
De telles fonctions f sont appelées holomorphes ou analytiques. Elles ont

des propriétés particuliéres. Par exemple,

Proposition 5. Supposons que le rayon de convergence de la série de puis-
sances Y o2 anz" est positif, R > 0, et supposons que les a, ne sont pas tous
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nuls. Alors il existe p € (0, R) tel que le disque B,(0) contient seulement un
nombre fini de zéros de f, cid f(z) = 0 seulement pour un nombre fini de
2 € By(0).

Preuve. Soit 7 € (0, R). Pour |2| < r nous estimons

- S
=it
< gt Z a2 C+0)
Famyel
< Y gl
f=it
ni Ly
= P > lale?
fa=e)
e

o ¢ = c(r,n) < 00. Si N est le plus petit indice tel que ay 7 0, nous avons
en particulier

|£(z) —anz"| < |z|¥*'c  pour tout |2| <r. (%)
Supposons que Iénoncé dans la proposition est faux. Nous trouvons alors

dans tout disque By (0), k = 1,2,..., un zéro 2 # 0, chd f(z) = 0. En
insérant z dans (x) nous obtenons

Java| < |=/¥*'e  pour tout k,
lan] < lzle pour tout k.
Comme lim 2 = 0, il suit que ay = 0, ce qui contredit ay # 0. o

Voici une conséquence importante.
Théoreme 3. Considérons les séries de puissances

g+ a1z +apz® +
bo+biz+ b2+ ...
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de rayons de convergence Ry > 0 et Ry > 0. Supposons qu'il existe une suite
() telle que 2 # 0 et que

limze=0 et f(a)=g(x) pour tout k.

Alors an = by pour tout n =0,1,2,

FIGURE 4.2~ f(z) = (%) = |

En particulier, nous pouvons “comparer les coefficients” :
Si (2) = g(2) pour tout z € B,(0) pour un 1 € (0, min{ Ry, R}), alors

an = by pour tout n > 0.

Preuve. Le théoréme suit en appliquant la Proposition 5  la différence
£(2) = 9(2) = 302 g(an — ba) 2" o

La fonction exponentielle exp: C — C

Le rayon de convergence de la série de puissances

est infini, d'oit la série converge absolument pour tout z € C. Nous pouvons
donc définir

exp:C—C, 2z exp(z)
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En plus, nous définissons

&

exp(2).

Daniel Bernoulli a prouvé en 1728 que le nombre complexe e est également
Ia limite d’une autre suite :

Proposition 6. Soit z € C et () une suite dans C telle que 7, — z. Alors

lim (1+2)" = Jim

nooo n

En particulier
Jm (142)" = I >

et pour z = 1 nous obtenons de nouveau I Proposition IIL. 8,

.
s (1+3) =2u

pour tout z € R,

Preuve. Similaire  celle de la Proposition II1. 8. o

Théoréme 4. (Propriété fondamentale de la fonction exponentielle)

exp(z+ exp(z) exp(w)| pour tout z,w € C.
Preuve. Exactement comme dans R (Théoréme IIL. 3). a
On a done
exp(—z) = (exp(2)) ™" et exp(z) #0 pour tout z € C.
TN I W S — Y o

Proposition 7. exp(?) = exp(s)  pour tout = € C.
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Preuve. Clest vrai parce que les coefficients de la série sont réels : Pour = € C

posons
n
ule) = 35

=

Alors

s“(?):gn:z! kz() kz;%’::

En vertu de la Proposition 3.5 nous trouvons done

exp(z) = limsy(3) = lims,(z) = msn(z) = exp(z) -

Les fonctions Sinus et Cosinus : R — R

Limage de Paxe réel R sous P'application exp est encore dans R : Pour z € R,

PPyt |

n=o

Cependant, P'image de 'axe imaginaire iR sous Papplication exp est dans le
cercle de rayon 1 dans C :

Proposition 8. [e| =1 pour tout z € R.

Preuve. En utilisant le Théoréme 4 et la Proposition 7 et |2
tout z € C nous trouvons

2% pour
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FIGURE 4.3 - Les images des axes R et iR sous exp.

Nous avons done, par définitions, la formule d’Euler

e = cos(z) +isin(z)| pour tout x € R.
i
o
jcos T 1
51

FIGURE 4.4 — La définition de sinz et cosz.
2

Comme 1 = (Re &™) 4+ (Im &)2,
(cosz)® + (sinz)® = 1 pour tout z € R.
En plus, la définition montre que

cos(—z) = cosz et si —sin  pour tout z € R.
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Prolongeons les fonctions trigonométriques sin et cosz sur tout C. Les

fonctions sin, cos: C — C sont définies par
e
sz = ——— €C,

sinz =

Nous avons done, par définitions,

e = cosz+isinz| pourtout z € C.

Cependant, cos z et sin z ne sont plus la partie réelle et imaginaire de 2. En
utilisant i = —1 on calcule

(cosz)®+(sinz)® = 1 pour tout z € R.
En plus, la définition montre que
cos(—z) = cosz et sin(—z) = —sinz pour tout z € C.

La propriété fondamentale de la fonction exponentielle implique tout de suite
les Théorémes d’Addition.

Théoréme 5. (Théoremes d’Addition) Pour tout z,w € C,
cos(z+w) = coszcosw —sinzsinw,
sin(z+w) = sinzcosw + cos zsinw.

Preuve. (Théoréme 4) Par définition de sin et cos,

dlesuw) gz

(cos z + isin z)(cos w + isinw)

= coszcosw — sin

sinw + i(sin z cos w + cos zsinw),

e7iE+0) — cos z cosw — sin zsinw — i(sin 2 cos w + cos zsin w).
Prendre maintenant la 4(la somme) et 4 (la différence). o

En particulier,

cos2z = (cos2)® — (sinz)’,  sin2z = 2sinzcosz.
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En appliquant les Théorémes d’Addition &

(z+w) +3(z—w)
(z+w)+3(w—2)

et en soustrayant les identités obtenues il vient que pour tout z,w € C,

z2t+w

cosz—cosw = —2sin

z+

sinz —sinw = 2cos

Théoréme 6. Pour tout = € C,

ST
cosz g( )(Zk)!
2kt

sinz = Z(*Ukm =

k=0

En particulier R = oo, et le théoréme est vrai pour z =z € R.

Preuve. Utiliser la définition de cos z et sin , la série de puissances de exp z,
les régles de calcul pour les série de puissances convergentes, et i2 = —1 d'ot

(@ — i)
Nous allons étudier la fonction exponentielle et les fonctions trigonométriques
plus soigneusement au Chapitre VI. Nous y verrons, en particulier, qu'il existe
un nombre 7 € R tel que

&2 — o pour tout z € C.
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Fonctions continues f: R — R

5.1 Définitions et exemples

Soit f: 1) — C une fonction, ot D C R oit D) C C est lensemble de défintion
de f.

Définition. La fouction f: D — C est continue au point zo € D si pour
tout £ > 0 il existe un & > 0 tel que

[f(z) = f(z0)l <= Yz €D avec |z —zo| < .

La fonction f est continue sur D si [ est continue en tout point de 1.

Voici la signification géométrique de la continuité de f en o pour le cas
oit f: R D D — R : Pour tout intervalle

1:(f(0)) = {y €R| f(zo) —2 <y < f(zo) +}
il existe un intervalle
Is(zo) = {z € D|20—8 <z <z0+5}

tel que le graphe de f sur I5(zo) est contenu dans la bande R x I.(f(o)) ©

est continue sur tout R.

Exemples. 1. f(z) =
En fait, soit 2o € R, et £ > 0 donné. Posons & := =. Alors

1/(2) = f(=o)| =

— x| < & pour tout x € R avec |z — x| < 4.

81




rId208.jpg
82 5. Fonctions continues (sur R et C)

-

1=(f(z0)

J(zo) § R x L(f(zo))

1.’ La fonction f: R — R définie par f(z) =0siz <0et f(z)=1siz >0
west pas continue en 7o = 0.

Preuve. Choisissons & = 4. Comme |f(x) — f(xo)| = |f(x)| = 1 pour tout
7 >0, il Wexiste donc pas de 6. o

2. La fonction f: C — C, z + 2% est continue sur tout C.

Preuve. Soit 7 € C et = > 0 donné. Notons que
|2+ 20| < (2= 20) + 20| < |z— 7| +2lz0| pour tout z € C.
Nous pouvons donc estimer

1/(2) = J(=)]

2

=2l = Iz = )z + 20)| < |z = 20 (|7 = 20| + 220 -
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-

Choisissons maintenant § = 3(z, %) > 0 tel que 3(5 +2|z0]) < = (on peut
prendre, par exemple, 6 = min{1, 57 })- Si |2 — 2| < & nous avons done

1/(2) = f(20)] < 8(8+2]z]) < &

La preuve, est aussi le graphe de la fonction f: R — R, z + 2%, montrent
que donné &, il est impossible de trouver un & qui marche pour tous les z. Tl
faut choisier 8 en terme de = et de 2.

To

3. Pour tout k € N la fonction f: [0,00) — R, z + /T est continue.

Preuve. Selon IExercice 7 de la Série 2,
|z — ¥l <
Pour > 0 donné, posons done §

W~ ol < Yr—ml < Vo ==

Alors |z — zo| < & implique
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o

4. Les fonctions Lipschitziennes sont continue, selon un exercice de la Série 10.
5. La fonction f: R — R définie par
0 si T€Q,
-
& 1 si zeR\Q.
nest continue dans aucun point T, € R.

Preuve. Soit = = § et x5 € R. Pour tout § > 0, Iintervalle I5(xo) contient
des points de Q et des points de R\ Q, d’oit [z — 7| < & n’implique pas que
1f(@) = f(wo)] < 5- !

Continuité via suites

Théoreme 1. Soit [: D — C et 2o € D. Alors les deuz affirmations sui-
vantes sont équivalentes.

1. [ est continue en zo.

2. Pour toute suite (z,) C D telle que 7, — 7o on a f(za) = f(xo), cad.

Jim g =20 dans D = lim f(a) = f("liju u) = [(z) dansR.
Preuve. 1. = 2. Soit (z,) une suite dans D) avec 7, — o et soit & > 0.
Nous devons trouver N € N tel que |f(zn) — f(zo)| < & pour tout n > N.

Comme | est continue en o il existe § > 0 tel que |f(z) — f(z0)| < &
pour tout z € D avec |z — zo| < 8. Comme 2, — 7 dans D, il existe N € N
tel que | — o] < 8 pour tout 1 > N, et done | f(z) — f(z0)] < = pour tout
n>N.
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= 1. = — 2. Supposons que pour un =, > 0 il n'existe pas de § > 0 tel
que

|/(z) = f(zo)| <20 pour tout z € D avec |z — z,| < 4.

Pour tout n € N nous trouvons done un point z, € I tel que
[tn =0l <3 et |f(zn) = [(z0)| > 0,

d'oit 2, — 7o pendant que f(za) = f(zo). o

5.2 Regles de calcul

Regle L. Soient f,g: D) — C continues en 7, € D. Alors
(i) f+ g est continue en zo.
(ii) Af est contimue en zo pour tout A € C .
(iii) f - g est continue en zo.
(iv) Si g(zo) # 0, alors é est définie proche de z, et est continue en z .

Preuve. Un exercice de la Série 10. a

Les points (i) et (ii) impliquent que I'ensemble des fonctions D — C
qui sont continues en o est un espace vectoriel sur C, et les points (i)-(iv)
montrent que Uensemble des fonctions D — C qui sont continues en zo et
'y s'annullent pas est un corps.

La Régle I implique que les polynomes p(z) = Y p_,axz* avec a € C
sont continues, et que, plus généralement, les fonctions rationelles ’qi(u) ol p
et g sont des polynémes, sont continues sur C\ {z € C | g(z) = 0}.

Régle IL. Dans la situation ) - E —25 C soit f continue en z € D) et
soit g continue en f(zo) € E. Alors g o f est continue en zo.

Preuve. Supposons que z — zo dans D). Comme [ est continue en o, nous
avons f(2n) — f(2o) dans E. Comme g est continue en f(zo), nous avons
9(f(xa)) = 9(f(z0)) dans C. Ceci est vrai pour toute suite z, — zo dans D,
d'o g o f est continue en zo. o
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Conséquence 1. Soit f: D) — Rs, contimue en 74 € D. Alors la fonctiion
V/T: D — Ry est continue en z, € [) pour tout k € N. En particulier, la
fonction x + z° est continue sur [0, 00) pour tout s € Q.

Preuve. Utiliser "Exemple 3 et la Régle IT o

Conséquence 2. Si f est continue, alors les fonctions 7, |f], Re f, Im f sont
continues.

Prewve. T="o, |f|(z) = || o f(=), ete. o

Pour f,g: ) — R continues, les fonctions

max(f,g) :=3(f+g+If—gl) et min(f,9):=5(f+9-1f—g])

sont done également continues.

Régle ITL Soit f: [a,b] — C continue et injective. Alors la fonction réciproque
S fla,b] = [a,b] est continue.

Preuve. Soit y € fla,b] et soit (y,) C f[a,b] une suite telle que v, — y.
Nous devons montrer que f~!(y,) — f~'(y). Alors /! est continue en y, et
comme y € f[a,b] est arbitraire, /! est continue sur tout f[a,b].

Soit z = [~'(y) et Tu = f~(yn). Supposons que &, ne converge pas
vers z. Alors il existe & > 0 et tme sous-suite (2, )x>1 de (z,) tel que

[tm —7| > pour tout k> 1. (5.1)

Comme (zn,) C [a.b], la suite (z5,) est bornée, et donc possede (selon le
Théoréme de Bolzano- Weierstrass) une sous-suite convergente (p, );>1,

lim z,, = 2"
st

Comme [a,b] est fermé, z* € [a,b], et (5.1) montre que |z*
2* # 2. Cepandant, avec la continuité de f,

f@) = f (113:2'1,.5) = Jim f on,) = Jim vny, =y = f(2).

Ceci est une contradiction a Phypothése que f est injective. o
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Dans la Régle 111 il est important que Dintervalle [a,b] est fermé. Par
exemple, la fonction f: [0,1) — S, f(z) = €*™ est continue et injective,
mais sa réciproque f~': S' — [0,1) n'est pas continue, voir le dessin et
Texercice de la Série 10.

Finalement, rappelons de la Proposition 11 (iii) que donné une série de
puissance Yo anz" de rayon de convergence R > 0, la fonction associée
f: Bgp(0) — C est continue et la fonction f: B,(0) — C est Lipschitz pour
tout 7 < R.

5.3 Le Théoréme de la valeur intermédiaire
5.4 Ensembles fermés et compacts

5.5 Fonctions continues sur des ensembles com-
pacts

Continuité uniforme

Rappelons qu'une fonction f: D — C est continue sur D si elle est continue
en tout point z, € D, cid si pour tout point zo € D et pour tout £ > 0 il
existe un 8(zo,€) > 0 tel que

|f(z) — f(zo)] <= pour tout z € D avec |z — zo| < 3(zo, ).

La borne d(o, <) peut donc dépendre de 7. Si on peut trouver pour tout
> 0un §(=) > 0 universel, on parle de continuité uniforme.

Définition. Une fonction f: 1) — C est dite uniformément continue sur
D si pour tout = > 0 il existe un 8(=) tel que

|f(z) = f(z')] <= pour toute paire 7,2’ € D avec |z —2'| < 3(z).
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Proposition. Toute fonction continue f: K — C sur un ensemble compact
K est uniformément continue.

Preuve. Supposons que [ nest pas uniformément continue. Il existe donc
un £ sans & approprié; pour tout n € N on peut donc trouver une paire de
points z,, 7, € K telle que |z, — | < 1/n et | f(za) — f(z})| > . Comme
K est compact, la suite () posséde une sous-suite (zn,) qui converge vers
un point £ € K. Comme |z, — 24| < 1/n, la suite (z/,,) converge également
vers £. 11 suit que img o0 f(2n,) = S(€) = limy 0 f(z),), ce qui contredit
/(za) — f(2)] > 2o pour tout n. o

5.6 Continuation continue, limite de fonctions

5.7 Le Théoreme fondamentale d’Algebre

Théoréme. Tout polynome de degré > 1 & coefficients complezes admet au
‘moins une racine dans C.

On notera qu'un polynéme de degré > 1 & coefficients réels peut ne pas
admettre de racine dans R (par exemple le polynéme o2 +1). Mais il admet
toujours, par le théoréme, an moins une racine dans C.

Preuve. (d’Alembert) Soit

no1

p(z) = an?" +an_ 12"+t a1zt a0
un polynéme & coefficients complexes, de degré n > 1 (donc an # 0). Soit

pi=inf{p(z) | z€C} > 0.

On va d’abord montrer que cet infimum est atteint. Pour cela on commence
par remarquer que [p(=)| — oo lorsque |2| — oo (cad. pour tout C > 0 il
existe B> 0 tel que [p(2)| > C dés que |2| > R). Cela résulte de légalité

Ip(2)l =

oit le premier facteur || du membre de droite tend vers oo lorsque |2| — co
et le second tend vers |an| # 0. Par conséquent, il existe R > 0 tel que
[p(2)] > [p(0)] pour |2| > R, d’on Vinfimum de |p(z)| sur tout C est égal

["an +an_127" |

+otaz
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a Vinfimum de [p(z)| sur Bp(0) C C. Comme Br(0) est compacte et p est

continu, le Théoréme 4 montre que cet infimum est atteint sur Br(0).

Tl existe done z € C tel que [p(z)| = p. Le théoréme sera démontré si
nous pouvons conclure que s = 0. Raisonnons par I'absurde et supposons
4 > 0. Considérons q(2) == p(z + z0)/p(2). Clest un polynome de degré n,
(0) =1, et on a |q(z)| > 1 pour tout = € C par définition de pu. Il s'écrit

4(2) = 1+ bz + b 2 4o b2

olt by # 0 et 1 < k < n. Comme Papplication R — S' C C, t — e, est
surjective (selon le Corollaire du Théoréme 6), il existe § € R tel que

10

On déduit, pour z = re avec r > 0,

— ] + B PFHEEO b pngind
d'ow, pour tout r < [b| %,

la)| < (1 =r¥b) + gl +
= 1—rF (bl = rlbea| = —

Mais pour r > 0 suffisamment petit, Uexpression entre parenthses ci-dessus
est > 0, et par conséquent on a alors |g(z)| < 1, une contradiction. o

On notera dans la démonstration précédente que le nombre zo, dont la
construction conduit A la contradiction, vérifie z5 = —|bk|/(bir*) et n'est
done pas réel lorsque k est pair et by, réel > 0.




rId232.jpg
90

5. Fonctions spéciales




rId235.jpg
Chapitre 6

Fonctions spéciales

6.1 Les fonctions ¢*,Inz, a*,log,
Dabord quelques définitions :
Définition. Soit /: R — R une fonction. On éerit
lim f(z) = a €R
si pour tout £ > 0 il existe un C = C; > 0 tel que
(=

On peut tester cette propriété via des suites :

al < pourtout z>C.

Lemma. lim f(z) = a <

a pour toute suite (z,) C R telle que lim z, =

Comme lensemble image R de f est complet, on a le

Critére de Cauchy. La limite lim f(x) eviste dans R <=> pour tout = > 0
il eziste un C = C. > 0 tel que

|f(z) = f(z)] < & pour tout z,z' > C.
Géométriquement, lim f(r) = a signifie

91
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Dessin

Exemple. Soit f(z) =  pour z > 0. Alors lim f(x)

Dessin

Preuve. Soit £ > 0 donné. Choisissons C = C. = 1. Alors

<& pourtout z>C.

Him

/() =0 = f(z

o

Définition. Nous éerivons lim /(z)
C=Cy >0 tel que

o0 si pour tout N > 0 il existe un

f(z) >N pour tout > C.

La fonction exponentielle exp

Rappelons que la fonction exponentielle exp: R — R.q définie par

exp(e)

satisfait & 'identité
&Y = ¢! pour tout z,y € R.

On vérifie aisément que

lim
50 T

Proposition 5 (Propriétés de exp)

b
2. e’>2% T pourtout >0 et n>0
k=0 ™"

3. e*>1 pourtout z>0
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4. 0<e™ =L <1 pourtout x>0

5. ¢ >0 pourtout zeR
6. z<y=>e<e
Croissance :

1
7. lim —e* = 400 pour tout n >0
T300 TN

8. lim z"¢™ = 0 pour tout n >0

Preuve. 1.-5. suivent des définitions.

6. Soit = <y, cad y =7+ h ot h > 0. Alors

care” >0etel > 1.
7. Soit z > 0. Selon 2,

& i dot i d'o i et
€T mrn N Ty M Sam T

8. Soit z > 0. Alors

n !
et = D OFD g i e
et T 300

En particulier, lim ¢ = oo et lim e~ = 0.

En appliquant le Théoréme de la Valeur Intermédiaire aux intervalles [—n, n],
n > 1, nous trouvons donc que exp: R — R est surjective.

Dessin

Le logarithme naturel In
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La fonction exponentielle exp: R — R.q est continue, strictement croissante

et surjective, d’ott bijective, et posséde donc une réciproque

(exp)": Rog » R.

D'aprés la Régle III, (exp)! est continue, et clairement (exp)~

! est stricte-

ment croissante et bijective; il s'appele logarithme naturel et s'écrit

In = (exp): Ryg > R.
On a done
lny = (exp)”'(v)
rz=hy & =y
et d’aprés la définition de Papplication réciproque,
In(expz) = z pour tout z€R
exp(lny) = y pour tout y >0
Dessin
Proposition 6 (Propriétés de In: R.q — R).
1. In(e) =In(e') =1 et In(1)=In(e®) =0
2. In(zy) =Inz+Iny  pour tout z,y >0

3. lim In(.

4. limln(z

20

Preuve. (ramener & exp)
1. est clair
2. In(zy) = In (€"%e¥) = In (B=412%) = Inz +Iny

3. Posons 7 = ¥ ot y > 0. Alors lim Inz = lim In(e%) = lim y = o0
ey o o

4. Posons 7 = ¢ oty > 0. Alors liglnz = lim In (¢™) = Jim () =

—o0

y00.

o
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La fonction exponentielle de base a

Motivons d’abord la défnition. Soit a > 0 et g € N. Alors
In(a% = In(a-a---a) = na+---+Ia = gha

Pour a > 0 et q,p € N nous avons donc

q]n(ai) = 1n(a54) = In(a") = plna,

In (aE) = 2lna.

En appliquant exp nous trouvons

af = exp (Ln (a%)) = exp (g lnn).

Pour tout nombre rationel r € Q et pour a > 0 nous avons donc

d’ont

a" = exp(rlna) = ™

Définition. Pour a > 0 et = € R on définit

7 . grina

o =

Proposition 7. Soient a,b> 0 et .y € R.

1. Ina®=zlha
2. o™ = qa%a¥
3. (@) = o=
4. o = (ab)*

Preuve.  (ramener & exp)
1.a% = &9, doit In(a%) = In (*19) = zlna

. gt — miing _ ghaiying _ @hagina _ gzgu
3.In((a®)?) £ yln(a®) £ (zy)Ina £ In(a™), doi (?)? = a™
4 0l — crhagEnb — gxlhatin) _ gxhied) — (qp)e o
Définition. Soit a > 0. La fonction

T o> 0% = N R 5 Ry

Sappelle fonction exponentielle de base a.
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6.2  sin, cos, arccos, . . .

Proposition 10 (Racines de sin et cos).
1. {z€R |sinz =0} = {nr |n € Z}
2. {z€R|cosz=0}={F+nr|nel}

Preuve. Comme cosz > 0 pour « € [0, %) et comme cos(—z) = cos, on a
cosz >0 pour z € (-5,3).
Comme sinz = cos(3 — z), il suit que
sinz >0 pour x € (0,7).
Ceci et sin(z + 7) = —sinz montrent que

sinz <0 pour z € (m,27),

cad. 0 et 7 sont les seules racines de sin dans [0,2r). Comme sin(z + 2r) =
sinz, le point 1 est prouvé. Le point 2 suit du point 1 et de cosz
sin(% — ) — —sin(z — ).

(=N}

Théoréme 6 (Coordonnées polaires pour = € C).
Tout nombre compleze = € C\ {0} peut étre écrit comme

z=re®  our=l|z>0 et pER
Le nombre ¢ est unique & Uaddition de 27n prés. Il est appelé Uargument
de .
Preuve. 1. Supposons ’abord que Tm 2 > 0. Posons 5
Alors v > 0 et u?+v? = 1, d'oi [u] < 1. Selon la Proposition 12 nous pouvons
poser

u+ivonu,veR

= arccosu.

Alors ¢ € [0, 7] et cosp = cos(arccosu) = u, sinp > 0. Comme u? +v? = 1
et v >0, il suit que sinp = v, et donc

utiv=e¥ et =z
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2.SiTmz < 0, alors Imz > 0, d'olt = [3e?* =

e, cad. 2 = |z|e~.

3. L'unicité : Soit = = [2[e pour un ¢ € R. Alors e = ¥, cad. ellP—9) = 1,
et donc ¢ — 1) = 2mn selon la Proposition 11. a
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Fonctions dérivables f: R — R

7.1 Définition de la dérivée

7.2 Regles de calcul

Théoreme 2 (Dérivée de la fonction composée = chain rule). Soit f
dérivable en a et g dérivable en b= f(a). Alors go f est dérivable en a, et

(g0 1)(a) = 9 (f(a)) f'(a).
Pour les différentielles ceci signifie
d(go f)(a) = dg(f(a)) o df(a).
Preuve. (Théoréme 1, Proposition 1) Posons b = f(a). Par hypothése,
J@) = fl@) = (f@)+n@)(—a) ob limr(z)=r(a)=0,
9(w)—9() = (dB)+n@)w—b) ou limro(y) = ra(b) = 0.

Avec y = f(z) et b= f(a) nous obtenons

9(/(2)) —a(/(@) (6'() +72(v)) (/=) = /(@)
(g'(6) + ra()) (f'(a) + r1(2)) (z — @)
9 (B)f(@)(x — a) +r5(z)(x — a)

+1y
+r

99
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r3(@) = g(B)ri(2) + (@) r2(f(2)) +72(f(2))1(2)-
Comme les compositions et les produits de fonctions continues sont continues
(Propositions V.10 et V.11), la Proposition 1 montre que
lim ry(z) = rs(a) = 0.

D'aprés le Théoréeme 1 (iii) il découle que g o f est dérivable en a et que

(90 )(@) =4 (f(@) ['(a)- g

Théoreme 3 (Dérivée de la fonction réciproque). Soit f: J — I bijec-
tive, soit b = f(a), et soit [~': [ — J continue en b. Si [ est dérivable en
a, et si f'(a) £0, alors [~ est dérivable en b= f(a), et

U0 = 755
Pour les différentielles ceci signifie
A b) = (@ @)™ on b= J(a).
Preuve. Par 'hypothése nous avons
(@)= f(@) = (@) + (@) —a)
et comme f: J — I est bijective,
y=J@)er=1"(),
L'identité (7.1) devient
y=b= (f@)+r@) (@) - 1"®).

Comme f/(a) # 0, nous trouvons un = > 0 tel que

F@)+7(@) #0 silz—a|<e
Pour ces  nous pouvons écrire

Fw-re 1
b T P
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Par I'hypothése, /! est continue en b, d'oit
lim (/@) = r(/~() = r(a) = 0

et donce

7.3 Monotonie, Théoréme de la Valeur Moyenne

7.4 Regle de 'Hospital

Rappelons que lim

1 72 T 50
“(z+%5+...)=1++... 51
T 2 2

Voici une antre manitre de calculer de telles limites.
Proposition 9 (Régle de I'Hospital). Soit —00 < a < b < oo. Soient
1,9: (a,b) — R dérivables, et g(x) #0, g'(x) # 0 pour tout z € (a,b).
Supposons que
1. lim f(2) =0 et limg(x) =0, ou
2. lim f(2) = 0o et im g
['(z)

Si lim === = X € R egiste, alors lim 1@ existe aussi, et

(o) e
1@ _ @

zoag(z)  2oa g(z)

Et la méme chose est vraie pour © — b.

Dans lexemple,
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Pour la preuve, nous aurons besoin du

Théoréme 6 (TVM, forme généralisée). Soient f,g: [a,5] — R conti-
nues et dérivables sur (a,b) telles que g'(z) # 0 pour tout = € (a,b). Alors
9(b) # 9(a), et il eiste £ € (a,b) tel que

)

Remarquons que le Théoréme 6 est une généralisation du Théoréme 5 (poser
g(x) = =), alors que le Théoréme 5 wimplique pas le Théoréme 6, car le
Théoréme 5 montre seulement que

o) —f(a) _ ['&)

= L8 sour &6, peut-étre différents.

9(b)—g(e) (&)

Preuve du Théoréme 6 : Nous avons g(b) # g(a), car sinon, ¢/(§) = 0 pour
un & € (a,b), selon Rolle. Posons, “comme dans la preuve du Théoréme 57,

1) = f(a)
9(b) — g(a)

Alors F(a) = f(a) = F(b). Selon Rolle (le Théoréme 4), il existe ¢ € (a,b)
tel que F'(€) =0, cad. (x) est vraie. o

F(z) = f(z) - (9(z) — 9(a)).-

Preuve de 1. dans la régle de UHospital, sia € R :

Par hypothése, limsia f(z) = 0 et limza g(z) = 0. En posant f(a) == 0 et
g(a) := 0, nous obtenons f,g: [a,b) — R continues et dérivables sur (a,b).
De plus, ¢/(x) # 0 pour tout = € (a, b) par hypothése.

Selon le Théoréme 6, pour tout « € (a,b) il existe &(x) € (a,7) tel que

f(@) _ ['(¢E@)

9(e) — 9E@)”
Comme £(z) € (a, z), nous trouvons

@) . PE@) . @
oo "B TR
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La Preuve de 2. dans la régle de U'Hospital, si a € R, est un peu plus com-
pliquée.

Sia ¢ R, lepoint 1. (resp. 2.) est obtemu de 1. (resp. 2.) pour a = 0 via la

substitution z := L. Par exemple,

I JG) n . PO SG) i L)

.
wen Ly TG _
B R Rl e e R e

7.5 Exemples

Exemple 1 : Maximum d’émission d’un corps rayonnant et loi du
déplacement de Wien. En physique, le corps noir est un modele uti-
lisé pour représenter le rayonnement électromagnétique (infrarouge, lumiére)
d'un objet en fonction de sa température. Il est défini comme étant un objet
absorbant totalement la lumiére & toutes les longueurs d'ondes. Contraire-
ment & ce que son Tom suggére, UN Corps Moir n'est pas nécessairement noir
mais émet de la umitre. La caractéristique principale est que le spectre de
Dénergie rayonnée (cad la distribution de I"énergie rayonnée en fonction de la
longuer d’onde A) ne dépend que de la température T. Pour T donné, c'est
alors une fonction F()). D'aprés Max Planck (1858-1947; vers 1900),
a

PO) = @m

Ici, @ = he® et b= he/k, oft ¢ est la vitesse de la lumitre, h est la constante
de Planck et k est Ia constante de Boltzmann. Etudions les points extremum
de E. Nous regardons d’abord H = 1/E, alors

.
)y = -2 (%ebﬂ“ —5(eH/ — 1)) .

a

On a H'(A) = 0 ssi le terme dans les grandes paranthéses s'annule; avec
= b/TX cette condition devient

J(@)

La dérivée de f est f'(z) = (z —4)e. Sur [0,4] la fonction f décroit alors
strictement de f(0) = 0 & f(4) = 5 — e, et sur [4,00) elle est strictement

= ze" —5(e"— 1) =
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croissante. Comme [(4) < 0 et f(5) = 5, [ posséde donc exactement une
racine z; € (0, 00), qui se trouve dans (4,5). On peut montrer que zo ~ 4.965.

La racine o de f correspond 4 la racine de H’

b
Men
Tro

En regardant la distribution des signes de f nous trouvons :

Dans (0, A,) on a H < 0, cad H est strictement décroissante ;

Dans (Am,00) on a H' >0, cd H est strictement croissante.
Am est done le seul point minimum de H. Pour E cela implique
Résultat : E posséde sur (0,00) exactement un point mazimum Ap. On

Uobtient d Uaide de la constante universelle C := b/xq = he/kzy via la loi
de Wien

3 T = C.

Exemple 2 : Le Principe de Fermat et la loi de la réfraction. Nous
considérons deux milieux homogénes M; et M. Soient les vitesses de propa-
gations (de la lumire, par exemple) vi > 0 resp. vz > 0. Nous cherchons le
trajet le plus rapide d'un point A, = (0,hy) du premier milieu & un point
Ay = (a,hy) du deuxiéme milieu, o nous supposons que le trajet le plus
rapide entre dews points dans le méme milieu est une droite. Le temps de
parcours de A; via P = (z,0) & A; est alors

v v ’

i

() z€eR.

Pour trouver un point minimum de ¢(z) nous cherchons une racine de sa
dérivée (t est dérivable car nous supposons hy, by # 0). On a

P a
—_—
/2B v/ (—ap+ 13

Supposons a < 0, voir la figure. Alors £/(0) > 0 et '(a) < 0, d'ot ¢’ posséde au
moins une racine 7o € (a,0). De plus, la fonction ¢ est strictement croissante,
car sa dérivée est positive,

t(z) =

V@
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Tl suit que , est la seule racine de . De plus, (z) S 0 pour ¢ S 7, montrent
que 7, est le seule point minimum de £.

Aulieu de caleuler 7 nous donnons une charactérisation plus importante :
La condition #(x0) = 0 est équivalente &

—z, . m—a
Va+ i flme—aZ+h

En exprimant ceci en terme de I'angle dincidence p; et de l'angle de réfraction
> mous obtenons la loi de réfraction de Snellius

=v v

singi v 2
sing, vy’ :

Résultat : Il faut choisir P tel que (7.2) a licu.

FIGURE 7.1 - Réfraction d’un rayon de lumiére au confins de deux miliewx
M, et M, de vitesses de propagation vy et v.

7.6 Dérivée d’ordre supérieure

7.7 Convexité et f”

Nous introduisons la notion importante de convexité; elle met en évidence
le role de la dérivée seconde. Les fonctions convexes furent systématiquement
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étudiées pour la premitre fois par U'ingénieur et mathématicien Danois J. L. Jen-
sen (1859-1925)

Une fonction f: [ — R sur un intervalle I est dite convexe si pour toute
paire P, P, de points sur le graphe de f la sécante passant par P et P est
au-dessus du graphe. Comme la sécante passant par P et P est donnée par
Ia fonction linéaire

T —T T—1;

fz)+

Ty — ) Ty — Ty

L(z) S(@2)

on obtient la formulation analytique suivante :

Définition. Soit I un intervalle. La fonction f: | — R est convexe sur I si
pour tout triple 1, 7,7, € I avec z; < ¢ < 5 on a linégalité

J@) < @) + ), ©
P ()
P

J S T
ERR EN

FIGURE 7.2 - La sécante passant par P, et /% est au-dessus du graphe de f.

Comme les points @ € (z1,) sont exactement les points Az; + (1 — Az
avee A € (0,1), nous pouvons reformuler la convexité comme suit :

Pour toute paire 11,72 € I avec z; # 2 et pour tout nombre A € (0,1) on a
FO@+ (1= Nx2) < Af(@1) + (1= N)f(2). ©)

Si dans (C) et (C") la relation < et remplacé par

<, alors [ est dite strictement convexe,
>, alors f est dite concave,
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>, alors [ est dite strictement concave.

Liexemple f(z) = [z] montre qu'une fonction convexe n'est pas nécessaire-
ment dérivable. Pour les fonctions dérivables nous allons charactériser la
convexité en terme de la croissance de la dérivée. Le lien est donné par le
lemme suivant, qui exprime la convexité en terme des quotients différentiels.

Lemma. La fonction f est convere ssi pour tout triple z1,z,72 € I avec
7, <z < 75 on a Uinégalité suivante :

@) =) _ S = Ja) w5
Er -z
Si [ est conveze, on a de plus
[ =S@)  fe)=S@) [ S@ o

T—1) = m—x =z
voir la Figure 7.2.

Preuve. En multipliant dans (C) avec le nombre positif 25—z, nous obtenons
Pinégalité équivalente

(22 —2) + (2 —2)) [(2) < (22— 2)f (1) + (& — 21)f(22)
qui est équivalente &
(22— 2)(f(2) = [(21)) < (z—2:)(f(22) = [(2)).

En divisant par le nombre positif (z; — 7)(z — 1) nous obtenons (7.3).
Prouvons finalement (7.3') : L'inégalité (C) montre que

=) ([(2) = f(a))

Ty — 1y

f@) = f(=) =

don linégalité & gauche dans (7.3'). L'inégalité A droite est montrée de
maniére identique. o

Critére de Convexité. Une fonction [ continue sur [a,b] et dérivable sur
(a,b) est conveze sur [a,b] ssi [’ est monotone croissante sur (a,b).
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Preuve. “=  Soit [ convexe et soient 71,7 € (a,b) avec z; < 7. Pour
tout point = € (z1,75) on a alors (7.3"). En prenant les limites = | 7, et
1 22 nous obtenons

)< J(@2) — J(=1)

Ty — 1)

S < (@),
cad que [’ est monotone croissante.

“& 7 Soit * monotone croissante. Nous montrons que f satisfait au Critére
de convexité (7.3). Soit 1,7, un triple dans [a,5] avee z; < T < Ta.
En vertu du Théoréme de la Valeur Moyenne ils existent & € (r1,7) et
& € (2,72) tels que

I(zy

Comme &; < & et comme [ est monotone croissante, (7.3) est prouvé. O

Conséquence 1. Soit f [a,b] — R continue et deus fois dérivable sur (a,b).
Alors

(i) f est conveze ssi " > 0 sur (a,b).

(ii) f est strictement conveze si f" > 0.

Preuve. (i) f' est monotone croissante sur (a,b) ssi f* > 0 sur (a,b).
(i) Si non, il existe un triple 71, 7,7 dans [a,5] avec 7; < = < 5 tel que
Végalité a liew dans (7.3). D'aprés le Théoreme de la Valeur Moyenne ils
existent alors & € (z1,7) et & € (z,72) tels que

1@ = 1) _ fe) - f@)

R Ty—T

J'&) = = ['(&)-

Ceci contredit & la monotonie stricte de f'. o

Exemples. 1. ¢” est strictement convexe sur R, car ()" = ¢ > 0.

2. Inz est strictement concave sur R, car (Inz)” = (1)’ = —% < 0.
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7.8 Convexité et inégalités

Dans ce paragraphe nous prouvons quelques inégalités fondamentales. La
base est la généralisation suivante de U'inégalité (C*) du Paragraphe 7.7.

Inégalité de Jensen.
Soit f: I —R conveze. Si Ar,..., An sont des nombres positifs tels que

M+ +d =1,

alors
SOz + M) < A f(@1) +o oo+ A () (Cn)

pour tous Ty,...,Tn € I.

Si [ est strictement conveze, cette inégalité est une égalité ssixy = --- = x,.

Pour | concave Vinégalité (Ca) a lieu avec >.

Remarques. 1. Comme Y7, A, = et ), >0, ona

minz; < > Ney < masx z;.
=

2. Si, par exemple, A; = & pour tout j, alors
1¢ 1¢
IaXm) <2 @)
= =

Preuve par induction. Pour n = 1 Vaffirmation est triviale. Pour Iétape
@’induction 7 — 1 + 1 nous posons.

A
M+ 4+A=2A et T‘z;+--+%zn

Clairement z € [. Comme f est convexe, (Cy) est vrai, est par hypothése
(Cn) est vrai. Nous pouvons donc estimer

z

I (Zmi +AM.IM,) < M(@) + Ansrf (@ng1)

In

AR + deaSa) ()
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cad (Cpyy) est vrai.
Soit maintenant / strictement convexe, et soit (Cpy1) une égalité. On
a donc des égalités dans (7.4). La définition de strictement convexe et la

premire égalité montrent que = — ny1. L'hypothése d'induction et la
deuxitme égalité montrent que 7 = -+ — . Il suit que z; = -+ = 7, =
Tnga. o

Comme application nous prouvons une généralisation importante de Iin-
égalité entre la moyenne arithmétique et la moyenne géométrique prouvée
dans PExercice 2 du TP 2

Inégalité entre la Moyenne Arithmétique Pondérée et la Moyenne
Géométrique Pondérée : Soient xy, .. ., 1, des nombres positifs arbitraires
et Ai,...,An des nombres positifs tels que

M+t =1

Alors

R D B

En particulier,

Ces inégalités sont des égalités ssi ;=

Les nombres 71 .-z resp. Mz +

+ Auzy sont appelés la moyenne

géométrique resp. arithmétique des nombres zy,..., 7, pondérée par
Aty A
Preuve. Le logarithme In est concave, car In"z = —2 < 0, d'oi Unégalité

de Jensen montre que

In(AZy + -+ MaZn) > A Inzy +--+ My Inz,.

Comme Papplication exponentielle est croissante, nous obtenons I'inégalité
affirmée en appliquant exp. Laffirmation concernant I'égalité suit de la conca-
vité stricte de In et de la monotonie stricte de exp. o
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Corollaire 1. Soient ..., Ay des nombres positifs tels que A+ -+An
Alors pour tous nombres positifs i, ., yn,

M
st < ™ A/

Cet inégalité est une égalité ssiy}'™ = ... = yal*.

Preuve. Poser y; =z}’ dans le théoréme précédant. o

Voici un cas particulier du corollaire.

Inégalité de Young : Soient p,q > 0 des nombres réels tels que } + 1
Alors pour tous 7,y > 0,

Cet inéqalité est une éqalité ssi 2

Preuve. Poser A,

et Ay = g dans le corollaire. o

»

A Taide de PInégalité entre la Moyenne Arithmétique et Géométrique
nous allons déduire U'négalité de Holder (O. Holder, 1858-1937). Un cas
particulier de celle-ci sera IInégalité de Cauchy-Schwarz. Pour la formulation
de ces inégalités nous utilisons la p-norme d’un vecteur z = (z1,...,2) €
€. Pour p > 1 on définit

l1=ll»

n ip
(2 w”) . (7.5)
pt

1

Inégalité de Holder : Soient p,q > 1 des nombres réels tels que }+

Alors pour tous vecteurs z,w € C",

3 ekl < el
=

llllo-

Pour p = g = 2 on obtient

Inégalité de Cauchy-Schwarz :

[z w)l < 201 - llwll
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oit (, ) est le produit scalaire standard et || | est la norme Euclidienne sur
c:

(w) =Y 2@k, lzlle = llzl = 4| Y lal
=1 k=1

Preuve. (Young) Nous pouvons supposer que z # 0 et w # 0. L'Inégalité de
Young montre que

Il fal | Jwl

. al 1w
Telloely ~ W=l Teolla

e

En prenant la somme nous obtenons I'inégalité désirée

1
a

- 1
Slawd < sc14--1=1
P

o 2

o

Nous finalement utilisons Iinégalité de Holder pour prouver linégalité
triangulaire pour les p-normes.

Inégalité de Minkowski : Soit p > 1. Pour tous z,w € C* on a

Iz +wllp < ll2llp+ llwllp |-

Pour tout p > 1 Papplication
C" =R, ze |z,
est donc une norme sur C.

Preuve. (Hélder) Pour p = 1 Vaffirmation suit de Pinégalité triangulaire
pour des nombres. Soit done p > 1. Choisissons ¢ > 1 tel que

En utilisant 'inégalité triangulaire et deux fois I'inégalité de Holder nous
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trouvons

Dol wnl = 3l + willz + wilP
= =

< D laller w4+ Y fulz + P
= =

= (g\zd”)iJr(g\wk\”) (g\zﬁwkwm)i»

Comme (p—1)g = p nous avons montré que

llz+wllf < (lzllp + lwllp) 12+ wiif/e.

Nous pouvons supposer que ||z + wll, # 0 et diviser par ||z + w|[}/’. Cela
donne
llz + wlis e < flzllp + wllp-

Comme p—p/q = p(1—1/q) = 1, le terme & gauche est [|z+w|l,, et inégalité
de Minkowski est prouvée. o

Nous concluons en remarquant que la convexité d’une fonction f: [ — R
est une propriété forte. Par exemple, elle implique que f est continue et que
" existe en dehors d’un ensemble de points dénombrable.
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Chapitre 8

Approximation locale de
fonctions.

Polynomes de Taylor et Séries
de Taylor

Lidée de base du caleul différentiel est I'approximation locale d'une fonc-
tion par une fonction linéaire, voir le Chapitre 7. Dans ce chapitre, nous
allons généraliser ce concept & Iapproximation locale des fonctions par des
polynémes. Dans le meilleur des cas, une fonction est méme décrite par une
série de puissances.

8.1 Approximation par des polynémes de Tay-
lor

Rappelons que pour une fonction f: I — R dérivable en a € I on a l'ap-
proximation linéaire de f

L(z) = f(a) + f'(a)(x —a) (8.1)

avec L(a) = f(a) et [/(a) = f'(a), et pour Verreur R=f — L ona
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Soin maintenant /:  — R une fonction n fois dérivable en a. Nous cherchons
un polynéme T de degré < n tel que

T@ = fla),

T'(@) = f(a)

T'(a) = ["(a),

T®(a) = [™(a).
Eerivons T sous forme

T(x) = 2":(1 —a)t.

=
Alors
T®(a) = ke,
o les coefficients co, . ., ¢y dun tel polynéme T sont
1
o = 1 /®).

Nous avons prouvé le

Lemme. Il eziste un unique polynéme T, f de degré <n avec (T, f)*®(a) =
% (a) pour 0 < k < n. Il est donné par

I '(ﬂ) f"( )

Jat

n!

Taf(z) = fa) + (z—a)+--- —a)"

(z—a)+

Pour faire explicite que T,/ dépend de a, mais que = est la variable,
on éerit souvent T f(w;a) au lieu de T, f(z). Ce polynome s'appelle le nt™
polynéme de Taylor de f en a, ou le développement de Taylor d’ordre n de |
en a.

Nous allons montrer qu'en analogie avec (8.1), le polynéme Ty f(z;a)
approxime f prét de a si bien que

(I) Tof(z:0)

het ay

=0.

Rappelons que le graphe de 7}/ est la tangente au graphe de f en a, et
remarquons que (si f”() # 0) le graphe de T est la parabole tangente au
graphe de f en a “de méme courbure” que graphe f.




rId313.jpg
8.1. Approximation par des polynomes de Taylor 17

FIGURE 8.1 - Les fonctions [ = exp(z), T, f(z;0) = 1 + z, Tof(z;0) =
142+ %, Taf(z;0) =1+ + S

Exemples. 1. f(z) = exp(x), a = 0.
2. f(x) =sin(z), a = 0.

Nous notons lerreur f — T, f par Rus :
Rusi(@) = [(2) — Taf(z.0).
Rappelons le Théoréme de la Valeur Moyenne : Pour & # a dans [ on a
f(z) = f(a) + ['(€)(z —a)
pour un £ = a+ 9z —a), ot 0 < < 1.

Théoréme 1 (Formule de Taylor, Ry, sous forme de Lagrange).
Soit f € C™I(I,R). I existe € =a+d(z —a), 0 < 9 <1, tel que

)
(n+1)!

Rui(2) = (e —a)™. ©2)

Preuve. (TVM Généralisé) Fixons z # a dans I. Nous définissons les fonc-
tions continues sur [

n (k)

o = 306y,
k=0 N

h(t) = (z—t)™".
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FIGURE 8.2 — Les fonctions [ = sin(z), 7\ f(z:0) = =, T5/(;0)
Tf=0)=o—F+5 Tf@0) = -5 +5 -7 hf=0) =

L -2+ 2 sur [0,2a].

Leur dérivées se calculent aisément & 'aide du régle du produit :

90 = reng-E=L

H(t) = —(n+1)@—0)"
D'aprés le TVM Généralisé il existe ¢ = a+d(z —a) avec 0 < ¥ < 1 tel que
(9(z) — 9(@))K'(€) = (h(z) — h(a))d(£)- (8.3)
Comme g(z) = f(z) et h(x) = 0,
9(z) — 9(a) J(@) = Ta(x, @) = By (2),
h(x)—h(a) = —(x—a)**.

En insérant ceci dans (8.3) nous obtenons

Raa)n -6 = —(a— a0 E-

Comme z # ¢ nous concluons que

z — a)rH

Ranta) = o) G-I
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=}

Nous allons donner une meilleure représentation du reste Ry, & aide de
Pintégrale au Chapitre 9.

Conséquence 1. Supposons que | ™1 (t)| < M pour tout t € I. Alors

M
mn+1)

/(@) = Tuf(z:0)] < —ay Vaael.

Pour z proche de a, le polynéme T f(2; a) est donc une bonne approximation

de f.

La formule (8.2) pour lerreur Ry, peut étre utilisée pour
o estimer Perreur (voir I'Exemple 1 en bas)
o déterminer le signe de erreur (voir 'Exemple 2 en bas)

Exemple 1 (Estimation de erreur pour cos)

Comme | cos™+1)(£)| < 1 pour tout £ € R et n € N et comme

N 2k
Ty cos(z,0) = oy cos(z,0) = ZH)*(;),
k=0 &
BE
et

cosz—zN:(—l)k o | e
2V Emi| S N
Llerreure pour sin peut étre estimée similairement.
Exemple 2 (Un critére suffisant pour des extrema locaux)

Soit f € C+1(I,R). Supposons que pour a € I,

F@)=---=f™(a) =0, mais [™+(a) #0.

Alors
(i) a est un point de minimum local stricte sin est impaire et {0+ (a)>0 ;

(ii) a est un point de mazimum local stricte sin est impaire et f®+9(a)<0;
) a nest pas un extremum sin est pair.
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Preuve. Nous traitons le cas f(*+)(a) > 0. Choisissons un itervalle J C I
autour de a sur lequel f®+)(z) > 0. Selon Ihypothése,

J(x) = f(a) + Bnyi(2)-
Sin+ 1 est pair,
fEn(g

Buna(@) = Ty

—a)™' >0 pourzeJ\{a}
doit f posséde en a un minimum stricte.
Sin+ 1 est impair,
Ru(2)>0 pouwrc>a et Ryu(z) <0 pourz<a
doit f en a ne posséde i un maximum ni un minimum. o

Conséquence 2 (Formule de Taylor qualitative). Si f € C*(I,R), il
egiste une fonction continue r: [ — R avec r(a) = 0 telle que

7(@) = Tuf(z,0) + (z —a)'r(z)] pour tout z € I (FT;)

Preuve. Posons

0 siz=a,
(o) = { [@ =TS .,
(z—ay EHL.

11 faut seulement vérifier que lim r(z) = 0. D'aprés la Formule de Taylor,

L)

n!

(z—a).

f(@) = Tarf(z) = Rl

Pour  # a on a donc

r(z) =

(/’(I) =Tt f(z) —
1 )
(/ ©

—or\nl

2U™E - 1@)
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ot § = &(r,a) =a+ ¥z —a), 0 <P < 1. Si z — a on a done &(z,a) - a.
Comme f™ est continue, nous concluons que lim r(z 2

Une formulation suggestive de (FT,) peut étre donnée via les Symboles
de Landau o et O :

Définition. Soient f,g: I\ {a} — R deux fonctions. On érit
f(@) = o(9(®)) (x—a)

si

Dans le cas g(x) — 0 on dit alors “f tend plus vite vers 0 que g pour z — a”.
On écrit

[ =h+o(g)
au lieu de

f—h = og).
La formule (FT,) devient :
Si [ € C™(I,R), alors

J(2) = Tof(z,0) +o((z—a)")  (z—a).
De plus, on éerit
f(z) = O(g(x)) (z—=a)

il existe une constante C telle que

|f(z)] < Clg(x)] pour tout z # a suffisamment proche e a.

Dans les applications, la forme suivante (un peu plus faible) de (FT,) est
plus pratique :

Si f € C™*A(I,R), alors

f(z) = Tof(z,a) + O((z — a)™") (zx—a)
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Preuve. D'aprés (FT,) on a

f@) = Twnf(z,0) +7(z)(— o)™
o j(“—H)(ﬂ)
= T@a)+@—a (T +7@)
oil le dernier facteur /‘;,L'])(:‘) +1(z) est borné pour z proche de a. o

8.2 Séries de Taylor

Définition. Soit [ € C=(I,R) et a € I. La série

&, f0)(a)
Zf(

1
= 7

Sappelle la série de Taylor de f en a, ou le développement de Taylor de f
ena.
Si 2 = a, la série de Taylor converge vers f(a).
Siz#a,ilya3 possibilités :
(1) La série de Taylor converge vers f().
(2) La série de Taylor converge, mais pas vers f(z).
(3) La série de Taylor ne converge pas.

Proposition 19 (Critére pour (1)). Soit f € C=(I,R) et a € I. Alors la
série de Taylor de f en a converge pour « € [ vers f(z), cad.

f@) = lim 3774

=
ssi. lim Ruyi(z,0) = 0.

Preuve. Par la définition du reste,

np()
@) -3 2@ oy = Ryi(zia)

1
= I
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ot laffirmation suit de la définition de la convergence. o

Possibilité 1. Soit J C I un intervalle autour de a tel que la série de Taylor
de f converge vers f(z) pour tout z € J. On dit alors que [ est représentée
sur J par sa série de Taylor en a. Dans ce cas, la fonction [: J — R est déja
déterminée par ses dérivées
9(a), F =05
dans le point a € J.
Nous verrons au CDI 2 que ceci est le cas pour les fonctions données par

une série de puissances sur Vintervalle de convergence (a — R,a + R), cad.
pour les fonctions analytiques.

Possibilité 2. Il est possible que la série de Taylor de f converge, mais ne
représente pas f, mais converge vers une autre fonction.

Exemple. Regardons la fonction
eV siz>0,
0 siz<O0.
Alors [ € C*(R,R) et f0)(0) = 0 pour tout j > 0 (voir la Série 13). La série
de Taylor de f en 0 est donc

Zf(), o = Zoﬂ 0 # f(x) pour z > 0.
=0 7 =0

J(=)

Possibilité 3. Il est possible que la série de Taylor de f en a diverge pour
tout x # a! Pour voir ceci, nous utilisons la

Proposition 20 (E. Borel) Soit (an)us1 une suite quelconque de nombres
réels. 1l existe alors une fonction lisse f € C=(R,R) telle que

™) =an, n=0
et f(z) =0 pour |z| > 2

Pour la preuve voir le CDI 2. Prenons maintenant la suite a, = (n!)2.
Soit f € C(R,R) une fonction avec /™ (0) = an. Alors la série de Taylor
de fena=0est

2 0
g

-0
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Elle diverge pour = # 0, car /nl — oo d’oit le rayon de convergence est
R=0.

Nous concluons ce chapitre par quelques exemples pour la possibilité 1,
cad. la série de Taylor e f en a représente f dans un interval autour de a.
1. La série de Taylor de f(x) = e en a = 0.

Nous avons f € C*(R, R), et comme /) (z) = % on a f™(0) = 1 pour tout
> 0. La formule de Taylor en 0 donne

s =SB o S
R A T E N ) R
e
:Zk‘ T 2™ pourun 0 <9 <1

Pour le reste on a done, pour & fixé :
[
(n+1)!

|Raia(2,0)] < &

selon la Prop. IL7, d'ott la série de Taylor en 0 converge en z vers ¢ pour
tout = € R.

2. La série de Taylor de f(z) 0.

Pour f(z) = sinz ona f(0) = (—1)"sin(0) = 0 et fE*+D(0) = (—1)" cos(0) =
(~1)". La formule de Taylor en 0 donne, pour un 0 <9 <1 :

sinz en a

1[? ( 0)‘ _ . ol a2k
@01 = fsine =3 Gy
= a2
@nt1)
e
m — 0 pour tout z € R
= e
dotisinz =Y (— 1)’6(% Y ad tout = € R.

k=
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3. La série de Taylor de f(z) = In(1 +3) en a

Nous avons f(z) € C*((~1,00), R) et /(0) = 0. De plus, ™ () = (1)~ {21
pour n > 1, d'od S (0) = (~1)" (n — 1)!. Ainsi, pour un 0 <9 <1:

_ NS00 g fO0)
In(l+z) = ; o 1+W 51

nl 1
e+ 1) A+ omt ©

& () [T
=2 k z“+"+1 (1+v]z)

ni1

S G

Pour 0 <2 <12 [Rpys(2,0)] < 5 0.

e
(@0 < 2 ()" <7 -0,

Selon la Proposition 19, la série de Taylor converge done vers f(z) pour tout
—i<z<1:
1<z<

=

Pour || <

Nous allons voir au CDI 2 que cette série converge vers In(1 + ) pout tout
—1 <z < 1. En particulier, pour z = 1 on obtient la formule fascinante

N | 1.1 1
h27§(71)m7175+§—3+...

trouvée par Leibniz. Pour z > 1 la série de Taylor ne converge pas, bien que
In(1 + ) est défini.
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Chapitre 9

Fonctions R-intégrables

9.1 L’intégrale de Riemann

Nous regardons des fonctions bornées f [a,5] — R sur un intervalle [a, 5]
compact (cad. fermé et borné)

Questions : Supposons que [ > 0, et posons
A={@yeR lasr<b0<y< (@)}
Comment peut-on définir I'aire de A? Comment peut-on la calculer ?

i

FIGURE 9.1 — Comment calculer aire sous le graphe?

Idée (Riemann, cf. Archiméde!)

Pour définir Pintégrale, nous avons besoin d’un peu de terminologie.

127
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FIGURE 9.2 - Lidée de Riemann

Une partition P de [a,b] est un ensemble fini de points
a=2< T <---<Tn=b.

Nous posons
Ay = Ay

et définissons Ia finesse de P par
ol
1Pl = max A,

Lensemble de toutes les partitions de [a,b] est noté P = Pla, b].

Soit maintenant, f: [a,b] — R une fonction bornée, et soit P € P. Comme [
est bornée, nous pouvons définir

m o= mf{f(x) |z € abl}

M = sw{f(2) |z €[ob)}
my = W) |7 € fry 0]}
My = sw{f() |7 € [y a])

Lasomme inférieure et la somme supérieure de f par rapport & P sont définies
par

s(f,P)

S,

S(f,P) = Y M;Az;
=
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! I

FIGURE 9.3 - 5(f, P) et S(f, P)

Clairement,
m(b—a) < s(f,P) < S(.P) < M(b—a).

Une partition P* € P est dite un raffinement de P € P si P C P* (cad.
chaque point de P est un point de P*). Une partition P* est appelée un
raffinement commun de P\, P, € Psi P* D P U P

Lemma 1. i P C P*, alors
s(f,P)<s(f,P*) et S(f,P)=S(f,P).

Preuve. Nous pouvons supposer que P* = P'U {z*}. La preuve est alors
évidente. (Faites un dessin)
Voici la preuve formelle. Soit

i1 < T < TG
Définissons
mo= wi{@) |z € e
p = wi{f(@)|z e}
Alors 1, > mj et py > my, dolt
UL P = s(f.P) = )+ ol

m
= (i —my)(a" = z5m) + (2 — my)(2; — 2%)
> 0.

— ") —my(w; —25-1)

(@~
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De méme maniére on montre que S(f, P) — S(f, P*) > 0. Aprés un nombre
fini d’étapes le lemme est démontré. o

Lemme 2. s(f, %) < S(/. %) pour tous P, P € P.
Preuve. Posons P* = P, U Py. Avec le Lemme 1 nous obtenons

s(f, ) < s(f,P*) < S(f,P*) < S(f, P).

1l suit que

sup s(f, ) < S(f,5) pour tout P, € P
PeP

doit
(D) < i >
swps(/,P) < jat, S/, P) (9.1)

Pour f: [a,b] — R bornée nous définissons lintégrale inférieure de f et
Tintégrale supérieure de f par

lf = sps(f,P) et //‘ = jnf S(/,P).

En vertu de linégalité (9.1),

Z[S7/-

Définition. Une fonction bornée f: [a, ] — R est R-intégrable ou intégrable

au sens de Riemann si _
[-]

Ce nombre est alors appelé Vintégrale de Riemann, et on écrit

/:IE/abfdzE/:f(z)dt —/:f(l)dt»

Liensemble des fonctions R-intégrables sur [a,b] est noté R = Rja, b].

Questions : » Quelles fonctions bornées sont R-intégrables?
 Comment peut-on calculer [* /7
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9.2 Le Critéere de Darboux

Théoreme 1 (Darboux). f € Rla,b] <

Pour tout £ > 0 il eziste une partition P € Pla,b] telle que
S(f,P)—s(f,P) < e

Preuve. (Définitions)

“«=": D’apres la définition de l'intégrale inférieure et supérieure,
o< [1=[r<sun-sur)

pour tout P € Pla,b]. Pour & > 0 donné, il existe par hypothése une partition
P €P telle que S(f, P) — s(f, P) < &, d'oit

0§7[—1f<5.

Ceci est vrai pour tout = > 0, d'ott [ f = [f.

“—7 : Soit = > 0. D'aprés la définition de linfimum et du suprémum, il
existe Py, P € Pla,b) telles que

sy < [ree
m) > fr-e
Pour P = P, U P nous obtenons, avec le Lemme 1, que
S, P) < S(J,Py) < /f+s< S(f, P) +2¢ < s(f,P)+2e,
dot S(f, P) —s(f, P) < 2e. o

Le Théoréme 1 est trés utile :
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Exemple 1. Regardons I fonction
1 siz € [a,b] est rationnel,
fle) = 5 .
0 siz € [a,b] est irrationnel.
Soit P € P. Alors m; = 0 et M; = 1 pour tout j, d'oit
SU,P)=s(f,P) = Y 1Az; =b—a > 0.
=t
D'aprés le Théoreme 1 on a f ¢ Rla, b].

Exemple 2. Une fonction f: [a,b] — R est une fonction en escalier s'il
existe a = 1o <l < --- < lm =bet c1,...,Cn tels que

f(z) = ¢ pour t 1 <z <l

Le Théoréme 1 montre que f € Rla, b] et que

[
L1300
“ =1

(voir les exercices).

Proposition 1. Si f: [a,b] — R est monotone, alors f € Ra,b].

Preuve. (Théoréme 1) Nous traitons le cas oit f est monotone croissante.
Soit P € P. Comme f est monotone croissante,

m; = flzj1) et M; = f(z;)
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d'ont

S(f.P)=s(f,P) =

= Y (f(zs) = flas) Bzy

=

< IPI Y (as) — (25))
=

= 171 U®) - /(@)

< e

si on choisit [|P]| < =/(f(b) — f(a)). Le Théoréme 1 montre donc que
1 € Rla,b]. o

Proposition 2. Si f [a,b] — R est continue, alors f € Rla,b].

Preuve. (Théoréme 1 et Proposition V.2) Soit = > 0. D'aprés la Proposi-
tion V.2, f est uniformément continue, cad. il existe & > 0 tel que

@@l <c sile—yl<a

Pour P € P avec ||P|| < 6 on a done M; —m; < = pout tout j, d'ot

SUP)=s(f,P) = D (M;—my) Az

=

e} Az
=

= c(b—a).

IA

Le Théoréme 1 montre donc que f € Rla,b]. o

Donnée une fonction bornée f: [a,b] — R, on pose

@) = max{f(z),0} >0,
J7(@) = max{-f(z),0} 0.
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i I+ [

On a done

= [f@)~ ().
TH@)+ [ (2).
Proposition 3. Si f € Rla,b], alors f*, f~ € Ra,b].

Preuve. (Théoréme 1) Soit & > 0. D’aprés le Théoréme 1, il existe P €
Pla, b tel que
S(,P)=s(f,P) < e.

Avec

M} = swp{f*(@) |z € [z
mf = W) |7 € [o,ml}
on a clairement
Mf—m} < M;—m; Vi
d'ol
S+, P) = s(f,P) < 8(LP)—s(f, P) < <.

Ceci est vrai pout tout = > 0. Le Théoréme 1 montre donc que f* € Rfa, .
De la méme maniére, on montre que f~ € Rja, b].
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9.3 Propriété de la R-intégrale

Théoréme 2.

1. Linéarité : Lensemble Rla,b] est un espace vectoriel sur R : Si f,q €
Rla,b] et A € R, alors [ +g,Af € Rla,b]. L'application

Ria,b >R, [»—)/bf

est linéaire :

/:f+.47:/abf+/:a et /ﬂbA/:A/nb[,

2. Monotonie : Soient f,g € Rfa,b] telles que f(z) < g(z) pour tout

7 € [a,b]. Alors X ,
Lfﬁ[!]

3. Normalisation : ['1=b—a

4. Continuité : Soit f € Rla,b]. Alors || € Rla,b] et

|[4g[mgwﬂwwwm

zefab]

5. Additivité par rapport aux intervalles : Soient f € R[a,b] et a <
c<b. Alors [ € Rla,d] et [ € Rlc,B], et

b < b
[r=[r]r

6. Continuité par rapport aux intervalles : Soit [ € R[a,b] et soient

[ansba] C [a,b] tels que an N\ @ et by 2 b. Alors

B[]
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Preuve. (Définitions, Théoréme 1)

1. Soient f € R[a.b] et A € R. En utilisant la définition de l'intégrale et
le Théoréme 1, on trouve aisément que Af € Rla,b] et que [*Af = A [’ f
(exercice).

Soient maintenant fi, f2 € Rla,b]. Pour P € Pla,b] on a

s(f1, P) +s(f2, P) s(fi+ /o P) (92)

<
< S(fi+fP)
< S(1, P)+S5(f2. P)-

Soit £ > 0 donné. Comme J; € Rla,b], il existe, d’aprés le Théoréme 1,
Py € Pla,b] tels que

SU3P) = s(fP) <&, §=12.
Selon le Lemme 1, ceci est également vrai pour le raffinement commun P =

PUP,
SUpnP)—sUP) < & =12 (9.3)

Llestimation (9.2) montre donc que
S(fi+ f2,P) = s(fi + [, P) < 2e.

Ceci est vrai pour tout £ > 0. Le Critére de Darboux (Théoréme 1) montre
done que fi + f» € Rla,b].

Llestimation (9.3) fournit
S(f;P) < s P)+¢ < /[,+5, i=12
Ceci et (9.2) donnent

/f.+f2 < S(fi4 o P) < /[.+//,+25.

Cest vrai pour tout & > 0, d'oi

[rens [n+[n
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En remplagant f; par —; nous trouvons

[rn= fenrem s fens fen=-(fa+ [ r)

etdone [ fi+fo=[fi+ [ for

2. Soient f,g € Rla,b] telles que f(z) < g(z) pour tout = € [a,b]. Avec le
Lemme 2 nous trouvons que

s(f,P) < s(g,P) < S(9,P) pour tout P, P’ € Pla,b].

En prenant & gauche le suprémum sur P nous obtenons

[1=[r<sam.

En prenant a droite U'infimum sur P’ nous obtenons

/1:1/’579:/57-

3. est clair car m; = 1 et M; = 1 pour toute partition P de [a,b].

4. D’aprés la Proposition 3 et 1. nous avons |f| = f*+ f~ € Ra, b]. Comme
J <|f| et —f < |/, nous trouvons

/ﬂbf LR (/ﬂbf,/:—f) 2 /:m 2 /ﬂbS\;p\f(r)\ s (0.

5. Soit £ > 0. D'aprés le Théoreme 1l existe P € Pla, b] tel que
SU,P) = s(f,P) < &

Choisissons P* = PU{c} > P. Selon le Lemme 1,
SU,PY—s(f,P) < <.

Si nous décomposons P* = P'U P" avec P € Pla,c] et P” € Plc,b], cette
inégalité s'écrit

S(f.P)+S(f,P") =s(f,P) = s(f,P") < e
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d'olt
S(f,P)=s(f,P)<e e S(UP)—s(f,P)<e

Ceci est vrai pour tout & > 0. Le Théoréme 1 montre donc que [ € R[a,c]
et f € Rle,b.

Soit maintenant P € Pla,b]. Avec la notation ci-dessus et au vu de la
définition de Dintégrale et du Lemme 1, nous avons

—
/ f+/ 1< SULP)+S(,P") = S(,P*) < SU,P).

En prenant 'infimum sur P nous obtenons

/:H/:f < infS(/,P) = /:/A

D —
e
[re[=][r
6. suit de 5. et 4. car sup, |f(z)| = M < co. o

Interprétation de Dintégrale comme aire

Soit f € Rla,b] telle que f > 0. Regardons

A:={(z,y) eR*|a<z<b 0<y< f(z)} C R%
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L’aire de A est alors définie comme

Attention : Pour f € Rla,b] arbitraire, nous avons, selon le Théoréme 2,

V= [ [ = [0

Pour information :

Théoreme 3. Soit f € Rla,b]. Alors

bf:n‘iﬂi Z Jla+ib-a) =)

Remarques. 1. Fixons n, et prenons la partition equidistante I, avec A; =
8 pourt tout n. Alors la somme

Y=Yt 0-0)

dans (+) ne vaut ni s(f, ) ni S(f, Pa), en général, voir le dessin.

2. Le Théoréme 3 est évidemment crucial pour “caleuler” les intégrales
par un ordinateur : Si f est telle que lordinateur sait évaluer (ou au moins
bien approximer) f, alors il sait évaluer Y2, /.

De plus, on peut souvent estimer Perreur qu'on fait en prenant ¥, f au
lieu de la limite lim ¥, /. Par exemple, soit f L-Lipschitzienne,

/(@)= @) < Llz—y| Y,y €|a,b].
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FIGURE 9.4 — En général, %, f ne vaut ni s(f, Pu) ni S(f, Pn).

Alors, pour la partition équidistante Py,
S
Z L(zj — zj21) Az;
= Lk2 2 Az

=

= LL(b—a)

S(f,Pa) = (/. Pr) my) Az

In

Comme s(f, Pa) < Suf < S(f, P) et s(f, Pa) < [ f < S(f, P,), nous savons
donc que

zn/—//| < LLb-ap.

Comme L et b—a sont donnés, nous pouvons donc calculer [ f aussi précisément
que nous voulons par un ordinateur qui sait évaluer f (ie. calculer ¥, f), en
prenant n suffisamment large.

3. Lexpression & droite est probablement ce qui au lycée était la définition
de lintégrale. Le Théoréme 3 montre que cette définition est compatible ave
Ia notre.

Pourquoi n'avons-nous pas simplement donné cette simple définition ? Par
exemple parce quil n'est pas clair pourquoi la limite dans (x) existe. Plus
importamment, & partir de cette définition les propriétés plus profondes de
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Pintégrale de Riemann sont difficiles a prouver. Déja la preuve des propriétés
5 et 6 du Théoréme 2 ne seraient plus évidentes.

5. Vous allez prouver le Théoréme 3 pour f continue dans I'Exercice 2 de
Ia Série 4.

9.4 Le Critere de Lebesgue, et les Inégalités
de Holder et Minkowski

Nous allons maintenant formuler une caractérisation qualitative des fonc-
tions R-intégrables.

Définition. Un sous-ensemble A C R est de mesure nulle si pour tout
= > 0il existe une famille dénombrable d’intervalles Iy, == (an, by), 01t ay < by,
tels que

1. Aic O’"
ot

2. i\m <e
=

Exemple. Les ensembles dénombrables sont de mesure nulle.

En fait, soit A= {z;,7,...} un ensemble dénombrable. Donné > 0, nous
choisissons les intervalles

e e
L= (z"—w,z,ﬁrw).
Tl est clair que A C | ] I, et comme |I,,| =

=1

b

nous pouvons caleuler

n=0

Remarques. (i) Un ensemble A de mesure nulle ne contient aucun intervalle
ouvert 1. Sinon,

> A2 1] >0

il >

In
1
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pour tout choix de {/,} satisfaisant la condition 1.

(ii) L'union d’une famille dénombrable d’ensembles de mesure nulle est
également un ensemble de mesure nulle.

(iii) Tl existe des ensembles de mesure nulle qui ne sont pas dénombrables.
Un exemple est Pensemble de Cantor €' = (2, C, du Chapitre V4.

Le théoréme remarquable suivant caractérise les fonctions R-intégrables.

Théoréme 4 (Lebesque) f € Rla,b] <
T est bornée et f est continue en dehors d’un ensemble de mesure nulle.
La preuve n'est pas facile et n'est pas donnée ici. Les fonctions R-intégrables

possedent done certaines propriétés de continuité. En particulier, les fonctions
continues nulle part ne sont pas R-intégrables (cf. 'Exemple 1 en haut).

Voici une conséquence immédiate du Théoréme de Lebesgue.
Proposition 6.
(1) Si f,q € Rla,b, alors f - g € Rla,b.
(2) Si f € Rla,b] est telle que fla,b] C [m, M] et i g [m, M] > R est
continue, alors go f € Rla,b.

Lapplication suivante est cruciale en analyse.

Proposition 4 (Inégalité de Holder et de Minkowski)
Soient f,g € Ra,b]. Alors /- g, |/?, |gl” € Rla,b] pour tout p > 1, et on a
Vinégalité de Holder :

b b 1p b 1/a
Lo (fue)” (fur)" eon el

Cest-a-dire
1. 0
I-glle < Wl llglles  P>1, —+==1.
P oq

En particulier on a l'inégalité de Cauchy-Schwarz :

, ,
Kol = /f-g} < [ 151l < U7k ol
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(Pour le premier < voir le Théoréme 2.)
De plus, on a Pinégalité de Minkowski

([lep)w < (f\flp)w+ ([lglp)w, p=1,

clest-a-dire
I/ +glle < /1o +llglle,  P>1.

Preuve. f-g, |fP, |g]” € Rla,b] découlent de la Proposition 6. Pour la preuve
de l'inégalité de Holder on utilise Iinégalité de Holder pour les sommes fi-
nies de nombres (Chapitre VL6) et le Théoreme 3 (Exercice). Linégalité de
Minkowski suit de I'Inégalité de Holder comme dans le Chapitre VI. O

9.5 Différentiation — Intégration
Comment peut-on calculer les intégrales?

Théoréme 5 (Théoreme fondamental du CDI). Soit f € R[a, b|. Suppo-
sons quil eiste une fonction dérivable F': [a,b] — R telle que F(z) = f(x)

sur [a,b]. Alors
5 9
/j:F(b)—F(a):/F’

Preuve. (TVM) Soit P € Pla, b] une partition, a = 7o < 71 < -+ < 2n = b.
D'aprés le TVM il existe des points 7;_; < 1; < ; tels que

Fa) = Flas1) = F) Ay = [(t5) By,
Comme m; < f(£;) < M;, nous avons

m; Ax; < (.

— Flej) < M A
En prenant la somme 3, sur j, ceci donne

s(f,P) < F(b) = F(a) < S(f.P). ()
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Soit maintenant & > 0 donné. Comme f € Ra,b], il existe P € Pla, b telle
que

5
—s+f155<f,l’>55(/,f'> < [r+e

Pour cette partititon P, (+) donne
v ¥
—+[r<ro-rw < [ 1+
Cest-a-dire ‘F(b) —Fa)- /’ < &. Ceci est vrai pour tout & > 0. o

Applications

1. Nous savons que sin’ = cos et que cos est continue, d’olt cos € R[a.b]. Le
% b > 4
Théoréme 5 montre done que [ cosz dz = sinb — sina.

2. La fonction Iz est dérivable et satisfait In'z = L sur (0, 00). Le Théoréme 5
montre done que

/ %dt —hz—ll=Is =z>1
f

FIGURE 9.5 - A(R;) =Inz

3. Pour a € R\ {1} nous savons que - L5 z*! = 2% pour & > 0. Pour
0 < a < b nous trouvons donc

¥ 1 1 1
— a+1 _ gas
l;dzfaﬂ(b ao+).
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4. (dérivée logarithmique) Soit f: [a,b] — R de classe C* et f(z) # 0
pour tout z € [a,b]. Posons F(z) := In(|f(z)]). Alors

’ I'@)

Fla) = 22,

©) = T

En fait,si f(z) < 0, alors F(z) = In(~f()) et F(2) = < (~/'(z)) = %3
et si f(z) > 0, alors F(z) = n(f(z)) et F'(z) = %

Le Théoréme 5 montre maintenant que

*1(@) g g
[ E s =l

Tl est convenable d'utiliser la notation traditionelle

Ga)[! = ¢|b = 6(b) - Gla).

5. Regardons F() :
que

z(Inz — 1) pour = > 0. La régle du produit montre

Flz) = (lnz—l)«#z-% ~ins.

Pour 0 < a < b nous obtenons

v
/ lnzde = z(lnz—1)[0

Question. Pour quelles [ € Ra,b] existe-t-il une fonction F telle que

F'(z) = f(z) pourz € [a,b]?

b a
Notation. Sib<a: / = —/ I
g g

Sib—a: /:f

Pour f € Rla,b] définissons la fonction F': [a,b] — R par

0

F(z) / f(Hdt, a<z<b




rId400.jpg
146 9. Fonctions R-intégrables

Ces intégrales existent par le Théoréme 2.
Proposition 7. La fonction I est continue. En fait, F' est Lipschitzienne,
|F(@) = F(u)| < Mlz—y| Y,y € [ab]

oi M = sup |f(z)].
zefab]

Preuve. (Théoréme 2) Nous pouvons supposer que z > y. Alors

o -rw - [1- 1~ /;f
[

La Proposition 7 décrit un nouveau phénoméne : L'opération “ntégration”
rend plus lisse!

et donc

|F(x) = F(y)l = < |z =yl sup | (@)l

o

ML

FIGURE 9.6 — A(z) = [ [ est continue!

Similairement, nous avons :

Proposition 8. Soit [ € Rla,b]. Si [ est continue au point &, alors la

fonction .
ra - [
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est dérivable au point ¢, et
) = f6).
Comme Cla, b] C Rla, b], nous obtenons
Proposition 9. Soit f € Cla,b]. Il eziste alors F € C*[a,b] telle que
F(z) = f(z) pour tout « € [a,b].

En effet, F(z

)

Géométriquement, la Proposition 8 est “claire” :

Ji I est une telle fonction.

I

—
a E&+h b

FIGURE 9.7 - Le Théoréme fondamental, géométriquement

) = ET“%(F(uh)—F(E))

& E(FE+R) ~ F(©)
1 [é+h

=5 J(t)de
1

~ Lron

= s

Le premier ~ est vrai pour h petit, et le second parce que f est continue au
point £.
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Preuve de la Proposition 8 : (Théoréme 2) Fixons € € [a,b] et un petit h # 0.
Sans perte de généralité nous pouvons supposer que A > 0. Nous avons

eih

(z)dz — [()h

F(E+h) = F(§) - f(©h A

x
/e (f@) - 1(©) d

et donc
|F(€+h) = F(&) = f(h] < |h] sup |f(z) = f(€)]-
[z

Soit maintenant & > 0. Comme f est continue en &, il existe § > 0 tel que
@) —f@)l<e si|z—¢l<d

Pour h < § il découle que
|F(€+h) = F(€) — ()R] < |hle.

Ceci est vrai pour tout & > 0, d'oit F'(£) = /(£). o

Définition. Soit f: [ — R une fonction. Une fonction dérivable F': I — R

telle que
Fl(a) = f(z) Voel

est une primitive de /.

Lemme. Soient F) et Fy deus primitives de f. Alors il eziste une constante
ceR telle que
Fi(z) = Paa) +¢ Vel

Preuve. Pour de tels F, et Fy,
d
E(FK(I)*Fz(I)) = fl@)—f(x) =0 Vzel,
doit Fy () — Fy(z) = c pour tout « € [ selon la Proposition VIL6.1. O

Selon la Proposition 9 toute fonction continue f: [a,b] — R posséde une
primitive, & savoir
L4

Fla
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Pour Pintégrale indéfinie on utilise la notation

/jz{Fdéﬁmble|F’:f}.

9.6 Techniques

Les régles de calcul pour la dérivée fournissent des régles de calcul
pour P'intégrale.

Proposition 10 (Formule de substitution)
Soient f € Cla,b] et p € C'[a, ] tels que p([a, B]) C [a.b]. Alors

@(B) B
[ @i = [ rew-soa.
(o) o

Preuve. (TF et chain rule) Selon la Proposition 9 il existe F € C*[a, b] tel
que F'(z) = f(x). La chain rule donne

%(Fov’)(ﬁ) = F(p®)-¢'(t) = f(p®) - £ (1),

B -8
/f(ga(L))-g;’(t)dL = /%(Fofb)(l)dl

™

(Fop)(8) — (Fog)(a)
= F(e(®) - Fle()

(8)
/ () da.
wla)

Pour I'intégrale indéfinie on a donc

([1)or=[wen-e)

Une conséquence de la formule de substition est
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Proposition 11 (Changement de variables)
Soient f € Cla,b] et p € C'[av, B]. De plus, soit ¢ [a, B] — [a,b] bijective,
c’est-a-dire p est strictement monotone et surjective. Alors

b )
[1@da= [ s v
a i)

Preuve. (Propostion 10)

Si ¢ est monotone croissant, alors ((a
Si ¢ est monotone décroissant, alors

Pour lintégrale indéfinie on a done
// = (/(/aw)»w')w"

1. Pour f: R — R continue et c € R,

Exemples

bie
i

/bf(L+c)dl = (z) dz

ase

Ceci est géométriquement clair (pourquoi?) et découle de la Proposition 11
en prenant (t) ==L +c.

2. Pour f: R — R continue et ¢ 0,

/ab/(rt)dl - é/:f(z)dz

Ceci découle de la Propostion 11 en prenant () := ct, ¢'(t) = c. Ce cas est
clair pour une fonction constante : Si, par exemple, f =1 et ¢ = §, alors

. .
[ =2 [ ron

voir le dessin.

Le cas général de la Proposition 11 suit, géométriquement, de ceci et de 1.,
en voyant lintégrale comme la limite d’une somme de Riemann, voir Ia Fi-
gure 9.2.
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16

/ (37)
1 1
t z
i 1 2

FIGURE 9.8 - Pourquoi la la formule “changement de variables” est vraie

3. Soit —1 <a<b< L Alors

.
/\/1712411: %z T

i
— - arccosz
2 a

Preuve. Posons f(x) := /I =2 pour z € [a,b]. Choisissons le changement

de variables

z = p(t) = cost pourt € [0,7].
Alors

f(e(t)) = V1 —(cost)? = V/(sint)? = sint
et /(1) = —sint, d'oit
I(e(t) - ¢'(t) = —(sint)’.

Comme cos | est inversible, ¢ = ~!(x) = arccosz. La Proposition 11
donne maintenant

/[:bmdz:/a

b
—(sint)?dt
Pour le caleul de cette intégrale, notons que
cos2t = (cost)? — (sint)? = 1—2(sint)?

d’ol
—(sint)? = —§ + L cos2t.
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On a done G/(t) = —(sint)? pour

G(t) = —5t+4sin2t = —§ (¢ —sint cost).
Finalement,
Glarccosz) = —1(arccos s — sin(arccos z) )
—(arccos = — VI—aPa).
o
Dans le cas particulier a = —1, b = 1 nous obtenons

1
/ Vi—a?dz = —}arccos1+ }arccos(—1)
by

= 0+ ir

Comme le graphe de f(z) = VI—a2, o € [1,1], est le demi-cercle
supérieur de rayon 1, Iinterprétation géométrique de cette identité est que
Taire du demi-disque est 3. Laire du disque

D= {(z,y) eR* |2’ +y" <1}

est done

AD) ==
et Paire du R-disque
Dp = {(z.y) €R? |22+ > < R}

est done

A(Dg) = 7l

R
ey
= Z/LRII\/If(-ﬁ) dzx
i 1
= 2/ RVI—2dt
oy

= 2R I=rR?

car
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FIGURE 9.9 - Le graphe de f(z) = V1 —22, = € [-1,1], est le demi-cercle
supérieur de rayon 1.

Proposition 12 (Intégration par parties). Soient f, g € C'[a,b]. Alors
, -
[on-ual-[u-a

Preuve. (TF et Régle du produit)
Par la régle du produit,

(fg) =["-9+f-4"

En intégrant cette identité,

Ji oy = / "+ / ).

Liintégrale & gauche vaut (/)| selon le TF. o

Pour I'intégrale indéfinie nous avons donc

Ju-or=rso=[rs

Exemples
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1. Pour0<a<b,

b b
/(lnz)dz = L@-\l/dz
7

s

= lnz-z‘s—/ leds
o T

fewsefynl

= c(nz 1)

doit
Inz = z(lnz—1).

Nous avons déja vérifié cette identité dans 'Example 5 & la page 143 en

dérivant. Ici nous Iavons trouvée par la régle du produit et en érivant

- 1. (Le truc d'utiliser I'identité x = z -1 ou = z + 0 est souvent trés
efficace. L’avez-vous déja rencontré ?) Utilisons-le encore une fois!

2. Pour z € [-1,1],

/m

/M-l

Vi—a. 17/
- \/1,—+/
- zﬁfmo”f/

ot nous nous sommes rappelés que arccos’ =

/ 5 (s VT2 —arccosz).

3. Le troisieme exemple est plus substantiel :

Z\/l—

Done

9.7 Intégration de fonctions rationnelles

Pour intégrer les fonctions rationnelles £, on décompose la fonction £ donnée
en une somme de fonctions rationnellés particuliérement “simples”, qu'on
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pent intégrer facilement. Lexistence de cette “décomposition en fractions
simples” vient de l'algébre.

9.7.1 Décomposition en fractions simples

1. Quelques faits sur les polynémes
En analyse, un polynéme est une fonction de la forme

f(z) = anz" +ap_ 42"+ +az+ao (94)

ot lindéterminée 7 est dans R oit dans C, et les coefficients ap, . ., a, sont
dans C. Si an # 0, alors n = deg f est le degré du polynéme, et a, est le
coefficient principal. Si tous les coefficients ax sont nuls, alors f s'appelle po-
Iynome nul, § = 0. On ne lui associe pas de degré. L'ensemble des polynomes
& coefficients complexes resp. réels est dénoté Cle] resp. Rlz]. En algebre, un
polynéme est une somme formelle.

Les sommes et les produits de polynémes sont encore des polynomes. Le
produit du polynéme (9.4) et du polynome

9(z) = bpa™ + by _1z™ !+

bz by (95)
est le polyndme

([9)(x) = eminz™™ +---+co
avec comme coefficients

o= Zu,bx. k=

=k

Proposition (Division avec reste). Soit g # 0 un polynéme. Alors pour
chague polynéme f il existe des uniques polynémes q et T tels que

T=ag+r  odr—0 ou degr < dezg. (9.6)

Preuve. Existence. Sideg f < deg g, alors f = 0-g+ est une décomposition
correspondant & (9.6). Soient donc f et g les polyndmes (9.4) et (9.5) avec
m < n et by # 0. En soustrayant de f le polynéme anby ™™g, nous
obtenons un polynéme f; de degé ny < n. Si ny > m, nous soustrayons de
f, un multiple de g tel que la différence est un polynéme de degré n < .
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En continuant ainsi nous obtenons finalement un polynéme r de degré < m.
Pour un certain polynéme q on a done f —qg =

Unicité. Pour une autre telle décomposition f = ¢g + 1’ avec ¢ # g on
aurait (g — ¢')g = r — 7/, et done deg(q’ — q)g = dea(r — ) < deg g, ce qui
est impossible. o

Si dans (9.6) on a = 0, nous disons que g divise f. De plus, f et g sont
coprimes 'il n'existe pas de polynome de degré > 1 qui divise f et g.

Racines. Décomposition en facteurs linéaires

La division avec reste (9.6) d'un polynéme f par z — a, a € C, donne un
nombre r € C. Onar=0si a est une racine de f, cad. f(a) = 0.

Lemme. Si a est une racine de [, alors [ est divisible par = —a, cad. il
egiste un polynome q avec degq = deg f — 1 tel que

f(x)

Si ¢ posséde aussi une racine, on peut séparer de nouveau un factenr
linéaire. Si on peut séparer n = deg [ facteurs linéaires, on obtient

I(

Conséquence 1. Un polynéme # 0 de degré n posséde au plus n racines.

—a)q(z).

= an(z —au)--

aw).

Si f est divisible par (z — a)

une racine d’ordre k de f.

, mais pas par (z —a)*+!, alors a s'appelle

Conséquence 2. Si les polynémes

f@) = apr"+ay 7"+ air+ag,

9(x) = bpz™ +bpz™ 4+ bzt by
prennent les mémes valeurs en n + 1 points différents, alors ax = bi pour
k=0,...,n, et donc f(z) = g(z) pour tout z € C.

Preuve. Le polynéme f — g de degré < n posside n + 1 racines différentes,
doit f — g est le polynome mul. o
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Remarque sur la notion d’identité pour les polynémes : f = g signifie

enanalyse: f(z) = g(z) pour toutz € C;
enalgtbre:  ax = b pour k=0,1,...,n.

La Conséquence 2 montre que la notion d'identité analytique et algébrique
coincident. o

Soit f € Clz] un polynéme de degré n > 1. Selon le Théoréme fondamer
tal d’algébre, f possede une racine a, cad. on peut séparer le facteur linéaire
z—a de f. En séparant n— 1 facteurs linéaires et en regroupant les facteurs
nous obtenons la

Proposition (Décomposition en facteurs linéaires)
Chaque polynéme non-constant [ € Clz] posséde une représentation

1) = =)oz — )

1l est clair que cette décomposition est unique & permutation des facteurs
prés.

Polynémes réels. Un polynome f est dit réel si ses coefficients ao, ar, .., an
sont réels. En général, un polynéme réel ne se décompose pas en facteurs
linéaires réels (regarder 22 + 1). Cependant, si a € C est une racine d'un tel
polynéme, @ est aussi une racine, car

1@ = Y ad* = 3 apat = T
0 0

Les racines non réelles forment donc des paires a,@ conjuguées. En mul-
tipliant les facteurs linéaires conjugués © — et = —@ nous obtenons des
polynémes de degré deux (z — a)(z —@) = 2% —2Re (a) 7 +a@ & coefficients
réels. Nous obtenons la

=

Proposition (Décomposition de polynémes réels). Chague polynéme
réel s'écrit comme produit de polynomes réels de degré < 2.

2. Fonctions rationnelles
Une fonction rationnelle est une fonction R: C\ E — C définie en dehors
d’un ensemble fini F et tel que R s'écrit sur C \ E comme quotient

- 10)

9(2)
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de polynémes. Nous allons toujours représenter R sous forme réduite, cad. f
et g sont coprimes. Les polynémes f et g sont donc déterminés d un facteur
constant prés.

Preuve. Soit I une autre représentation avec des polynémes coprimes.
Poul Vensemble intnt des:z avec y(z) 2 0 ot G(z) £ 0o Fiz)gls) =

(2)f(2) et done Fg = Gf selon la Conséquence 2. Comme f, g sont co-
primes et F,( sont coprimes, Punicité de la décomposition d’un polynome
en facteurs linéaires montre que F' = ¢f pour une constante ¢ et que G = g
pour une constante ¢’. Comme Fg = Gf, nous concluons que ¢ = ¢. o

Péles. Séparation de fractions simples

Un point a € C est un pole d’ordre n de la fonction rationnelle R si pour
R = £ sous forme réduite on a f(a) # 0 et que  est une racine d’ordre n de
g. Tl existe alors un polynome h avec h(a) # 0 et

__ I
RG) = = api (9.7)

En plus de la décomposition multiplicative (9.7) associée & un péle, une
décomposition additive joue un role important. Les pierres de construction
pour cette décomposition sont les fractions simples

(z—a)"*

Lemme (Séparation d’une partie principale). Soit a un péle d’ordre n
de la fonction rationnelle R. Il existe alors une unique décomposition

R(z) = H(z) + Ro(2)

telle que : H est une fonction rationnelle de la forme spéciale

H(z) = (zji"Jr

a

ot oil an £0,  (9.8)

et Ry est une fonction rationnelle qui n’a pas de péle en a.
La fonction H s’appelle la partie principale de R au point a.

Preuve. Existence. D’abord, nous transformons la représentation (9.7).
Comme f(2) h(a) — f(a) h(z) s'anmule en a il existe un polynome p tel

aque
1) _f@ _ @) —f(@)h(z) _ (z=a)p(z)

h(z) k@) (=) h(a) h(z)
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La représentation (9.7) devient donc

»(2)
R(z) = + e (99)
gl he

Nous faisons maintenant une induction sur n. Si n = 1, alors (9.9) est déja
une décomposition comme désirée, car h(a) # 0 et donc Ro := £ n'a pas de
pole en a.

n—1~sn: R est une fonction rationnelle qui n’a pas de pole en o ou a un
pole d'ordre < n— 1 en a. Dans le premier cas on peut poser Ry := R; dans
le deuxitme cas on décompose R selon I'hypothése de 'induction. On obtient
une décomposition comme désirée.

Unicité. Supposons qu'il y ait deux décompositions :

> (zii 4 Ro(z) = Z(Zfi”a)u +50(2).
=

=

En multipliant par (z—a)" et en évaluant la nouvelle identité en = = a nous

obtenons a, = b,. En enlevant 2 des deux cotés, on montre ensuite de
maniére analogue an_1 = by_1, ete. a
Soit R = % une fonction rationnelle, et soient a;,...,a € C les racines

de g, de multiplicité n,.,. .., n,. Alors
9(2) = (z— )" - (2 —ay)™. (9.10)

Comme f, g sont coprimes, aucun des ax nest une racine de f. Les poles
de R = I sont alors les a, dordre ny. Pour k = 1,....,s soit Hy la partie
principale de R associée au pole ay,

Angk O(np—1)k . ik

M) = G T gt P ey O e 20 (01D

Tout ensemble,

R=H+---+H+q. (9.12)

Ici, q est une fonction rationnelle sans péle dans C, et done (selon le Théoréme
fondamental d’algébre) le quotient d’un polynéme et d’une constante, cad. un
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polynéme. Ce polynéme g s'appelle la partie polynomiale de R. Nous avons
démontré le

Théoréme (Décomposition en fractions simples) Chaque fonction ra-
tionnelle est la somme de ses parties principales et de sa partie polynémiale.

Construction de la décomposition en fractions simples (DFS)

1. La partie polynémiale q de R = f est obtenue par division avec reste de
f=ag+r.

Preuve. En vue de (9.10) et (9.11), la fonction r := (H, +--++ H,)g est un
polynéme avec degr < deg g. En vue de (9.12) on a f = qg+r, comme dans
Ia division avec reste. L'unicité de cette décomposition implique Paffirmation.

o

2. Aprés la séparation du polynéme g il nous reste une fonction rationnelle
avec deg(nominateur) < deg(dénominateur). Eerire cette nouvelle fonction
sous forme 12 = £ avec f, g coprimes . Déterminer les racines a1, ..., as de g
avec leur multiplicités ny, . ., n. (Ceci peut étre un boulot difficile.) Il nous
reste & calculer les coefficients . des parties principales (9.11). Pour chaque

partie principale Hj, il est facile de trouver le coefficient principal ap, . : Ecrire
9(2) = (= — ag)™h(2). Alors, selon (9.9),

g = A0 _ e de Rl (r—onf®  enlepoibon., (018)
(o)

Les antres coefficients aze avec j < ng peuvent étre calculés par compa-
raison des coefficients : En multipliant la DFS

I ask
PR o4

par g, on obtient une identité entre dewx polynémes. En comparant les co-
efficients de cette identité, on obtient des équations linéaires pour les ap.
Une autre méthode pour obtenir de telles équations est d'évaluer (9.14) en
certains z.

1. Noter I'abus de notation
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Zt1 1 DFS est de Ia forme

Exemple. Soit 2) = -7
Ha—

e h
) =24 2 (9.15)
Nous caleulons a et by selon (9.13) :
& = wileur de 2 Ria) = ”11)2 nz=0: a=1;
z+1

by = valeur de (z—1)*- R(2) enz=1: b=2

Pour trouver by nous multiplions les deux ctés de (9.15) par le dénominateur
de R,

z+1 =a(z—1+bz+bz(z—1) = (z—1)*+ 2z +bz(z— 1),

et comparons les coefficients de 22 : 0= 1+ by, d'o by = —1.
Pour trouver by nous pouvons, aussi, fixer une valeur de = dans (9.15). Par
exemple, z = 2 donne I'équation 2 = 4 +2 + b;. Finalement, nous trouvons

z+1 1 2 1

Me—1f  z G-1F -1

9.7.2 Intégration de fonctions rationnelles

Aprés ces rappels algébriques, nous sommes finalement en position d'imtégrer

les fonctions rationnelles

@
9(=)’

ot f, g sont des polynémes & coefficients réels. En prenant Ia variable dans C,

ces polynomes deviennent des polynémes f(2), ¢(z) d coefficients réels. Pour
Ia fonction rationnelle R(z) = £2 nous avons donc

R(x) zeR

R(z) = R

Soit a une racine de g. Comme g(2) = g(%), nous avons
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Les poles a, ..., a, de R (qui sont les racines de g) sont done de la forme
ay,...,cu€R, BB, B2 PBe,....PuBa € C\R.
La DFS (9.12) de R est donc
R(z) = q(2) + HO(2)+ -+ H)(2)
+ HO(z) 4 HO)(z) 4.+ HOI(2) + HE(z)

Notons que

RE) = a@) + Ho@) +---+ HE(Z)
+ HB(Z) + HBE)(Z) +---+ HBI(Z) + HF)(z)

est une DFS de R(Z). Comme la DFS de R(z) = R(Z) est unique, nous
concluons que
 4q(z) = a(3)
d’oil les coefficients de g sont réels.

. H(ﬂ;)(;) = H®)(z)
d'oit les coefficients de H(@) sont réels, j =1,...,u.

o HE)(2) QHE) () et HE(z) = HOI(3), j=1,...,0.

Pour interpréter (x) nous fixons j, abbrévions 8 = §; et éerivons

d’ot
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Soit maintenant = € R. Par la linéarité de Pintégrale,
/R(z) = /q(z) +2/H<ﬂz>(:)+2/1~1<5ﬂ(1) + H®)(z)
3 3
o

1. q(@) = Y, eR

2. H®)(z) = He(x)

163

3. H®z)+ HP(z) = ((z f"‘ﬁ)m + & fmf?)’") ST (Ilfﬁ +

<R Y

Caleulons Pintégrale de ces trois types de fonctions :

| In(jz — af) sik=1
. [ { -
=
3. Sik>2:
by
+
/(rfﬁ)"
Si k=1, érivons
b b (2Reb)z —2Re(bif)
T-B z-B  &-(2ReB)z+|BP
Idi,

¢ = |82 > (ReB)? =t
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parce que B ¢ R.

Bz +C

2+ 2bz +¢
savons intégrer prés) sous forme g. Pour ceci, écrivons

Pour intégrer , nous aimerions Iécrire (& un terme que nous

2+ 2z +c

Q

pour le dénominateur. Alors Q'(z) = 2(z +5) et donc le numérateur et /()

sont liés par

Bz+C = gQ’(z)Jr(C—Bb).

Ainsi,
Bi+C __BQ@)
2+2%r+c 2 Q(z)

He- By

et

Be+C B, dz
/mdz Sl +2bz+r‘+(078b)/m.

Comme ¢ > b2, Vintégrale & droite vaut

/ dr _ 1 £ z+b
Prdite VeeB o ip

voir I'Exercice 1 de la Série 4.

Nous avons prouvé :

Théoreme. Soit R(z) = & une fonction rationnelle. Alors R posséde une
primitive qui est la somme d'une fonction rationnelle, d’un logarithme naturel
(In) et d’un certain nombre d’arc tangentes (arctan).

Remarque. Dans cette preuve, nous sommes passés par les nombres com-
plexes C. On pourrait rester dans R, mais lexposition deviendrait com-
pliquée! Le passage par les nombres “complexes” rend souvent la preuve
d'un résultat “réel” moins complexe. Vous allez le voir encore plusieurs fois.
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9.8 = est irrationnel

Rappelons que par la Proposition IL8, le nombre d'Euler e est irrationnel.
Le nombre 7 est également irrationnel. Ceci a été conjecturé par Archimede,
mais n'a été prouvé quen 1761 par J. H. Lambert. Nous allons doner la
preuve Ia plus simple connue aujourd’hui, qui est due & J. Niven (1947).

Proposition. 72 est irrationnel ; en particulier w est irrationnel.

Prewve. Supposons que 72 est rationnel, cid. 72 = & avec a,b € N. Nous

choisissons un nombre naturel n tel que Z2* < 1 et regardons la fonction

r
L m
"l-af = 2 Y ad,  a

D

Pour k <net k>2nona f®(0) =0, et pour n < k < 2n on a que

190 =
est un nombre entier, cad. J et toutes ses derivées prennent des valeurs
entiires en 0. Ceci est vrai aussi en 1 car f(1— ) = f(z).

Posons maintenant
Fla) i= 5(a™ (@) - 772" (@) + 7 D (a) — -+ ()7 [ a)).
F(0) et F(1) sont également des nombres entiers. De plus,
(F'(z)sinmz — wF(z) cosmz) = (F"(z) +n*F(z))sinmz
b2 f(z) sinz

wa" f(x) sin 7z

Tl suit que )
I:= 1r/ a"f(z)sinmrdr = F(0)+ F(1).
o
I est donc un nombre entier. D’autre part, 0 < f < & sur (0,1) et donc
0<1<™ <1,
nl

une contradiction. o
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9.9 TVMs et Formule de Taylor avec R,
sous forme intégrale

Dans ce chapitre nous allons rendre plus précis le TVM du Chapitre 7 et
la formule de Taylor du Chapitre 8 en utilisant I'intégrale.

Proposition 13 (TVM sous forme intégrale)
Pour f € C'[ab],

1
f(z) = f(y)+/ Sy+iz—y)di-(z~y) Yzyelabl. (+)
o
Remarque. Le TVM du CDI 1 dit que

f(z) = )+ J'(¢) (x—y) pour un £ € (z,y).

Le probléme avec cette version est quon ne connait pas ¢. Dans la forme
intégrale (x) on obtient une information précise en prenant la moyenne (Iintégrale)

des J".

Avant de donner la preuve, notons que () est “clair” pour un physicien :
Regardons une particule qui bouge sur une droite. Soit f(z) sa position au
moment z. Evidemment, la distance entre la position au moment z et la
position au moment y < « est la somme des distances f/(t) dt parcourues en
temps & —y,

— = “(t)dt o
@)~ 1) / 0 ()
En faisant la substitution ¢ =y + 7 (= — y) Videntité (x+) devient ().

Preuve de la Proposition 13 (TF et chain rule)
Fixons et y, et définissons la fonction

o(t) = fly+t(z—v)). 0<t<1.
Par I chain rule,
() = M'w+tz—v)-(z-v)

et en intégrant,

. .
[owa= [ rarie—m)-c-ni
o A
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Le terme & gauche vaut g(1) — (0) = f(z) — f(y) selon le TF. o

Dans les Chapitres 9.6 et 9.7 nous avons vu des applications concrétes de
Ia Proposition 12 (Intégration par parties). Voici une application théorique.

Proposition 14 (Formule de Taylor avec R, sous forme intégrale)

Pour [ € C™[a,b] et z,y € [a,b] on a

I"(w)
2l

1)

n!

i)}

T =yt

= () (z—y)+ (z=9)"+ Bny(2)

Rogle) = [ M iy g e - g))de - (2 - gy

n!

Remarque. Rappellons que dans la formule de Taylor avee Ro.1 sous forme
de Lagrange on avait seulement que

100
(n+1)!

ni1

Ruyi(z) = (z—y) avec £ € (z,y) inconnu.

Preuve. (Intégration par partie) Pour n = 0, la Proposition 14 est juste
la Proposition 13. Pour faire induction n — 1 ~» n, nous supposons que
la formule est juste pour n — 1, et que f € C™*![a,b]. Notons que par la
définition du reste,

ARI0)

Rury =

(z—9)" + Ra,
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D'autre part, avec ¢(t) L0 et (1,

™ (y+tz—y)) € C'0,1],

_ L %/(")(yﬁ»l,(zfy)) at - (w—y)

.
- [vouoa @

= (%"‘bl;*[w-w’dt) e

S o+ =)y -

+/Dx¥ SO0y + iz —y)) - (@ —y)de - (@ —y)"

(n)
LU B

e i
+/n a lt) FE (g 4tz —y)) dt - (@ — )™,

]
et Ia formule pour Ry (x) suit. o
Application. Regardons la fonction lisse

f(z) == m(l+g), o>-1
Rapellons que la série de Taylor de f en 0 est

ST()0) = ST e

=

IR (9.16)

Soit I I'intervalle des = pour lesquels cette série converge et vaut f(x). Comme
le rayon de convergence de ST(f)(0) est 1, il est clair que / C [~1,1]. Comme
la série harmonique diverge, —1 ¢ I.

Nous avons vu au Chapitre 8 comment la formule de Taylor avec reste
sous forme de Lagrange implique que [—1,1] C I. Cependant, pour z €
(—1,—1) cette version de la formule de Taylor était trop imprécise. Avec la
Proposition 14 on obtient que

I=(-11]
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Preuve. Exercice o

9.10 Courbes et leur longueur
Une courbe dans R" est une application
ISR, o (2a(t),. 2 (0)

d'un intervalle T vers R™ telle que les composantes z;: I — R sont continues.
La courbe est dite dérivable si tous les z; sont dérivables, et de classe C'!
si tous les z; sont de classe C1.

()

7(t2)

Liimage 7(I) s'appelle la trace de 7. Une courbe n'est donc pas seulement
un ensemble de points, mais “vient avec son horaire” (sa paramétrisation).
Par exemple, les trois applications

et = (cost,sint), tefo,2x]
e = (cost,—sint), t€[0,2n]
) = et = (cost,sint), te0,47]

sont des courbes différentes dans R? 22 C avec la méme trace S'.

Exemples

1. La courbe “naturelle” paramétrisant la droite entre deux points z,y € R"
est
V) =z+ily—=z), 0<t<lL

Cest la courbe qui bouge de & y en temps 1  vitesse constante [ly — ]|
2. Une ellipse est la trace d’une courbe dans le plan R? de Ia forme

(x(t),y(t)) = (acost,bsint),  te€[0,2r).
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/

-

FIGURE 9.10 - La droite entre deux points

L’élimination de ¢ nous donne I'équation de la trace

# ap
S+p=L

FIGURE 9.11 - L'ellipse

3. La spirale logarithmique est une courbe donnée en coordonnées polaires
par
«

5:[0,00) > R*=C, L r(t) €

o r(t) = ae et a,a > 0

4. La cycloide (voir Wikipedia pour un petit film)
Si le disque unité roule sans glisser sur une droite, alors un point fixe au bord
déerit ume cycloide :

Une paramétrisation est done donnée par

(z(6),y(t)) = (t—sint,1—cost), tER.
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03|

00|

FIGURE 9.13 - La cycloide

Cette courbe est lisse, bien que la trace n'ait pas Pair lisse!

Exercice. Caleuler la dérivée lim %(w) —(0)) de la eycloide en 0.
.

5. Graphes. Soit f: [ — R une fonction continue. Alors

1) = (L 11)

est une courbe avec 7() = graphe(f).

6. L’hélice est la courbe dans R®

T cost
q(t) = [rsint ), teR
ht
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Sa trace est contenue dans le cylindre { (7,7, 2) € R® | 22 + 4

FIGURE 9.14 - Une hélice
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Tangente & une courbe

Guidé par la définition de la dérivée d’une fonction, nous voulons définir la
tangente & une courbe comme limite de sécantes :

y(t+h)
TR

Un vecteur dans la direction de la sécante passant par 7(t) et y(t + h) est

AR =) _ (z;(t+h)—r.(l) rn(t+h)frn(t))
h h h

Formons la limite h — 0 composante par composante :

Définition. Soit 7: [ — R™ une courbe dérivable. Alors
3(t) = (1(8)s- - 3n()
est la tangente de 7 au point de paramétre ¢, et
5O =/ (@10) + - + (@)
est la vitesse au moment .
Exemple. Soit 7: / — R? un graphe, (t) = (4, f(t)) avec f dérivable. Alors
A0 = (LI'0)-

Remarque. La tangente §(t) est définie pour un point de paramétre f, pas
pour un point (t). Si = € trace(y) est un point double, cad. = = (t;) =
(ta) avec t; # t, alors les tangentes (11) et (L) peuvent étre différentes.

Par exemple, pour la courbe
1) = (-1,68-1), teR
nous avons (1) = 5(~1) = (0,0) et
q(t) = (232 —1), LeR
dolt (1) = (2,2) #(-2.2) =4(-1).
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La longueur d’une courbe

Supposons maintenant que 7 est une courbe de classe C'. Dans ce cas, la
vitesse [[§(£)]] est une fonction continue et donc intégrable.

Défintion. Soit 7: [a,b] — R" une courbe de classe C'. Sa longueur est
définie comme

5
o) = [ 1o

Justifions cette définition !

1. (physique) Cette formule est plausible : Si nous regardons [|§]] comme
vitesse, alors [[§(¢)]] dt est “Ia distance infinitésimale” ds parcourue en “temps
infinitésimal” dt. La “somme des distances ds” est donc la longueur de 7.

2. (géométrie) Avec cette définition, la longueur de la courbe
A(t) = z+t(y—z), 0<t<1

de PExemple 1 qui paramétrise le segment de z & y est

; ;
1) = [ ol = [ st = -zl

comme il faut.

Une ligne polygonale dans R™ est une courbe continue qui est linéaire
par morceaux. La finesse d'une telle courbe est la plus grande longueur d’un
segment. Soit y: [a,b] — R" une courbe de classe C'. Pour fixer les idées,
nous supposons que §(t) # 0 pour tout ¢ € [a,b]. En utilisant () on peut
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montrer que la longueur L(7) vaut la limite des longueurs d’une suite de
lignes polygonales avec sommets sur la trace de y et dont la finesse tend
vers 0, voir le dessin.

FIGURE 9.15 - Une ligne polygonale approximant -y

Remarque. Les segments sont les courbes les plus courtes entre dew points :

Soit 3 [a,b] — R™ une courbe de class C* telle que f(a) = = et A(b) = y.
Alors
L(B) = lly—=|l-

En fait, en utilisant le TF et le Théoréme 6 du Chapitre 9.10 nous pouvons
estimer

lly ==l = 118(5) - B(a)ll = "[B(l)dtH < f”ﬂ(t)”di = L(p)-

Calculons Ia longueur des courbes dans les antres exemples :

2. a) Regardons d’abord le cercle unité §' = {(z,y) € R? | 22 +y? = 1}.
Paramétrisons 5 par

y:[0,27] = 8!, ¢ (cost,sint) = e

Alors ([0, 2n]) = S* et 7: [0,27) — S' est bijective.
Fixons ¢ € (0, 2n]. Alors

.
Lolo) = [ /leos(O)+ i (o)

o /w‘/-(—sinl)2+(cos£)7dl
g

9
/ 1dt = 9—0
o

.
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FIGURE 9.16 — L’angle ¢ est aussi la longueur d’are sur S*

Langle ¢ est done la longueur d’arc sur S*. Pour (o = 27 nous trouvons

LS = 2r

(b) Regardons maintenant Uellipse

Pour la paramétrisation y(t) = (acost,bsint), ¢ € [0,27], la vitesse est
5@ = Va2sin® t + B cos?t

Supposons que a > b et posons € = /1 — &. Alors

-
L) =a| Vi—Peostidt = E(2m:e)

o

Clest une intégrale elliptique. Il wexiste pas de formule pour les primitives
de telles intégrales !

Les valeurs de E(2r;<) se trouvent dans les livres (et maintenant dans
Mathematica).

3. Pour calculer Ia longueur de la spirale logarithmique

() = r(t) (cost,sint) avecr(t) =ae™eta,a>0, >0
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nous regardons d’abord une partie finie v: [0,7] — R2, 7 < co. Comme
FOE = G10)+ ()" = (0) + F0)* = o (1 +a) e

nous trouvons

Lol = [ Is0nd
- ﬁ Ca VitaZedt
- g Vit (1—e®)
T IonEeis 0 15 ol e et dong
Ly = Jim L(lon) = & VIFa®

En particulier, la longueur est finie. Ce n'est pas évident, puisque la spirale
tourne une infinité de fois autour de I'origine. Fabriquez une fonction stric-
tement décroissante 7: [0,00) — (0,00) telle que la spirale y(t) = r(t)e®,
>0, est de longueur infinie!

4. Un arc de la cycloide est paramétrisé par
A(t) = (t—sint,1—cost),  t€0,27].
Comme
P Bl Bl ol
I¥(DI* = (1 —cost)® + (sint)® = 2—2cost = 4sin” §

sa longueur est
2 =
L(¥lozx) = 2/ |sing| dt = 4/ sintdr = 8.
o b

5. Le graphe de f € C'[a, ] est paramétrisé par
v:[a,b] = R?, L (L f(1)-

Sa longueur est donc

;
L) = [ VTR a

6. La longueur d'un tour de I'hélice est ... : Exercice.
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9.10.1 Systémes de coordonnées non-cartésiennes

Souvent, une courbe y: [a,b] — R™ est donnée en coordonnées non-cartésiennes.
Par exemple
tesret, L r(t)et

sont des paramétrisations du cercle et d'une spirale en coordonées polaires.
Pour caluler la longueur

; ;
1) = [ota = [Viaor e+ @ora

il faut savoir le lien entre ces coordonnées et les coordonnées cartésiennes,
car

At) = (#1(0), . (1))
est la tangente de  donnée en coordonnées cartésiennes.

Nous décrivons trois autres systémes de coordonnées.

Coordonées polaires sur B2 : r, ¢

Y

(z.y) =re? & (ryp)

T

Le lien entre z,y et 7, est donc
T=rcosyp r =12+ € [0,00)
y=rsing p=arg(z,y) € [0,27)

Pour z > 0 on a ¢ = arctan L. Pour r = 0 Pangle  n'est pas défini.

Coordonées cylindriques sur R : 1, p, z
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-

Ces coordonnnées sont tout simplement obtenues en prenant les coordonnées
polaires dans le plan -y et z pour la hauteur :

R=RxR 3 (1,,2) ~ (rnp2) € RZxR=R
Le lien entre ,y, z et 7, 2 est donc

=Vz2+y? € [0,00)

z=reosp -
y=rsing o= arg(z,y) € [0,2m)
z=2 1=z

Coordonées sphériques sur R : 1, ,6
La convention des mathématiciens est que I'angle 6 commence au plan équatorial.
(La convention des physiciens est que 8 = 0 au pole nord.) Nous avons donc

ref0,00): ladistance /27 + 47 + 22 de origine
pe(0,2n]:  le degré de longitude
be [l f] : le degré de lattitude
2°2

Exemple. Pour la terre la convention est que ¢ — 0 & Greenwich (3 Londres).
Les coordonnées sphériques de Neuchatel sont donc

(r,p,6) = (6370km, 7°,47%)
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Le lien entre z,y, z et 7, , 0 est

T = rcosyp cost
= rsing cosh
z = rsinf

Indépendence de L(7) de la paramétrisation

Notre définition de la longueur L(7) utilise une paramétrisation y de la trace
de . Il devrait étre vrai que pour une courbe y qui traverse sa trace mono-
tonement, L(7) ne dépend que de la trace, autrement L(y) ne serait pas une
quantité géométrique. Tout va bien :

Proposition 13. Soit f: [a,b] — f[a,5] = C C R" une courbe de classe C",
et soit : [a, 8] — [a,b] une applicatioin bijective de classe C! (cad. un
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changement de variables). Alors

L) =L(fow)

I 1@ o
a b
(o]
1

« B

FIGURE 9.17 - Lintégrale [* [ pour la courbe spéciale y(t) = ¢ in R

Preuve. Par la Propostion 11 (changement de variables),

G
wn = ol
01 (b)
= [, Il #eds
- 1(a)
et
-8
wep) = [ 7ol
B
JAcore e

!
Lireeiigens

Comme ¢ est bijective, ¢/(s) > 0 pour tout s ou ¢'(s) < 0 pour tout s.

Cas 1: ¢'(s) > 0 pour tout s, cid. ¢ est monotone croissante, d’olt
ola)=aet p(B)=b, ie. a=yp(a)etB=y'(b).

Comme ¢/(s) = [¢(s)| nous trouvons L(f) = L(f o ).
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Cas 2 : ¢/(s) < 0 pour tout s, cad. ¢ est monotone décroissante, d'o

@) =betp(B) =a, ie. a=y ‘B etf=¢

Comme cette fois —¢/(s) = |¢(s)|, nous trouvons
L = /: Il (eIl ¢'(s) ds
8
= [ Gl enas

s
= [Ireolveis
Lfog)

Paramétrisation d’une courbe par longueur d’arc

Chaque courbe (régulitre) possséde “une meilleure” paramétrisation : la pa-
ramétrisation par longueur d’arc, cad. & vitesse constante 1.

Soit f € C*([a,b],R") une courbe régulicre, cad. sa tangente s'anmule
nulle part : f/(t) # 0 pour tout a < ¢ < b. Définissons la. “fonction longueur
darc” de f par

silab] =R, s(t) = / 1)l dr = L(flja.g)-

Selon la Proposition 8, s'(t) = [|f(t)]| > 0 pour tout ¢, d’oit la fonction
s: [a,b] — [0, L(f)] est strictement monotone croissante et donc bijective,
et de classe C*. La fonction réciproque s~': [0, L(f)] — est également
strictement monotone croissante et C'. Regardons la nouvelle paramétrisation
de f définie par

o(r) = f(s7'(r)), O0<T<L
Alors g([0, L]) = f([ab]) et

40 = 0D 32570 = 160 7 = [y
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dott [|¢/(r)]| = 1 pour tout 7 € [0, L]. La courbe g est donc parcourue avee
vitesse constante 1, et

Lolor) = [Cwona = [T1a

cad. 7 est la longueur de go..

Exemple. Le cercle unité 5! paramétrisé par

tes f(t) = €", 0<t<2m

est paramétrisé par longueur d’are.

9.10.2 Intégrale d’une fonction le long d’une courbe

Nous savons déja ce quest Vintégrale d'une fonction f: [a,b] & R :

FIGURE 9.18 - L'intégrale [* f pour la courbe spéciale y(t) = ¢ in R

Nous aimerons intégrer des fonctions le long de n'importe quelle courbe
dans R". Soit donc 7: [a,b] — R" une courbe de classe C' et F': R* — R
une fonction continue.

F
—_— 1. R
a b

Alors la fonction
e F((0) YOl

est continue et donc intégrable.
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Définition. Le nombre

/ﬂbF(wm)wnndt —./ ,[pd,;

Sappelle I'intégrale de F le long de 7.

Glotle définition a duisens, car
1 Poury: fa 8] SR 4 =tona
. .
[r=[row pora - [ roa
= e = |

2. Si 7 traverse sa trace monotonement, alors j7F ne change pas si nous
reparamétrisons .

Plus précisément, soit ¢: [, 8] — [a, b] une reparamétrisation dérivable, cad.
i est de classe C", bijective, et /(1) # 0 pour tout a < 7 < B. Pour la
nouvelle courbe 0 p: [a, 8] = R™ on trouve alors

Fds = /Fds
oo w

Ceci est vérifié comme dans la preuve de la Proposition 13

9.11 Fonctions R-intégrables f: [a,b] - R"

Regardons une courbe dans R™

Filab o R e (At

Ja(®)

donnnée par les n fonctions continues f;: [a,b] - R, 1 < j < n. Comme les
J; sont continues, les intégrales [ f; existent. On pose

/:[:: (/ﬂb/.,/:f,u ,/ﬂb[,.) e

Selon la Proposition 9 il existe des fonctions F}: [a, b] — R telles que F}(z) =
fy(@),5=1,...,n. Onéerit F'(z) = f(x). D'aprés le Théoréme fondamental,

/bf = F(b) - F(a) :[F’.
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Remarquons aussi que si / € C*([a, b, R") (cad. f; € C*([a, b]) pour tout j),
alors

;
1) =1(0) = (=) [ ot s(t—w)ds Vin el
A
selon la Proposition 13.
Lestimation suivante pour la norme Euclidienne ||| dans R® sera utile.

Théoreme 6. Soit f: [a,b] — R" une courbe continue. Alors

"/bf" < [ W@t < (b=a) mas [ /Ol

peed
Preuve. Comme [ = (fi..... f»)): [a.b] = R™ est une courbe continue, la

fonction
e O = VA +---+ (1)?

est continue et done intégrable. La deuxiéme inégalité du théoréme suit du
Théoréme 2 (4). Pour prouver la premitre inégalité, abrévions

= [/ = (lbf‘,....[bf") = (uteeeestt).-
(=[1)

A
) / (u, F(1)) dt

nb
[l 1 (2)1] dt

Alors

lull® = (u,u)

IA

2

;
2 i [ Il

ot dans (1) et (2) nous avons utilisé le Théoréme 2, et dans Pinégalité la mo-
notonie de lintégrale et Cauchy-Schwarz. Si [[ul| = 0, la premitre inégalité
du théoréme est claire, et si [[ul| > 0 nous divisons par [Jul]. o
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Chapitre 10

Equations différentielles
linéaires

De nombreux processus naturels et techniques peuvent étre décrits par des
équations différentielles. Par exemple, la désintégration radioactive est décrite
par §j = —ky, et les oscillations simples par

mj+ry+ky = q(t).

superposition est valide sont
res.

Les processus pour lesquels un principe d
déerits par des équations différentielles I

Dans ce chapitre nous commencons par reformuler quelques problémes de
biologie et physique par des équations différentielles. Puis nous allons étudier
des équations différentielles linéaires a coefficients continus. Nous allons voir
que ces équations ont une unique solution, et en nous restreignant au cas de
coefficients constants nous allons construire la solution. En particulier, nous
allons résoudre les problemes posés au début.

Dans un bref dernier paragraphe nous allons aussi regarder quelques
équations différentielles non-linéaires. Comprendre les équations non-linéaires,
qui sont de grande importance pour toutes les sciences, est beaucoup plus
difficile. (En général, on ne peut pas construire une solution explicite.) Le
cours de master Systémes Dynamiques (accessible en 3™ année) est dédié a
leur étude.

187
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10.1 Probléemes

1. Poissons dans un étang
Soit p(t) le nombre de poissons dans un étang au temps ¢. Nous faisons les
hypothéses suivantes.

(Hy) Les poissons ne meurent pas.
(Hy) Tis ont toujours de la nourriture.
(Hs) Tis font toujours Pamour avee fertilité f constante.

Alors 'aceroissement Ap du nombre de poissons durant le petit intervalle de
temps [t, ¢+ At] est

Ap = [ALp(t). (ED)
Rééerivons cette identité comme
Ap
2 = TP0-

En prenant la limite Ap — 0 ceci devient une équation différentielle :

dp

L) = £a(1).

7 = Ip0)

Nous cherchons une fonction p(t) qui résolve cette équation pour ¢ € R (en
tout temps, dans le passé et le futur). Une solution est

p(t) = e, teR
oil po € R quelconque. En effet

dp

aW =mret =)

Notons que p(0) = poe/® = py. La constante p, s’appelle la condition
initiale pour le temps initial ¢ = 0. La fonction p(t) = poe’* est donc une
solution de I'équation différentielle (ED) pour la condition intitiale p(0) = po.
Nous allons voir plus tard que c'est Punique telle solution.
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FIGURE 10.1 — Solutions de p(t) = fp(t) pour trois conditions initiales
différentes

2. Désintégration radioactive
Soit u(t) la masse duraninm sur Terre au temps . Soit uo la masse d'uranium
sur Terre au temps £, (par exemple {o = 2021).

Par la désintégration radioactive,

{ (ED) a(t) = —ku(t) (teR)
() ulte) = uo (t=to)

Ici k > 0 est une constante. Comme toutes les constantes en physique, cette
constante est positive, par convention.
Nous cherchons une fonction u(t), ¢ € R, qui satisfasse (ED) et (CI). Une
telle fonction est
u(t) = yge ¥, teR

car 1(t) = o (—k) e = —ku(t).
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to

FIGURE 10.2 — Solutions de #(t) = —ku(t) pour trois conditions initiales
g = u(l) différentes

3. Oscillation avec amortissement

Nous considérons un ressort dans un milieu homogéne (air / eau / miel).
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0

position d’équilibre

Tirons le ressort :

Les physiciens nous promettent que si au moment ¢ = 0 nous lichons le
ressort, le mouvement du wagon obéit

(ED)  i(t)+2di(t) +kz(t) =0 (LER)
® ) 2(0) =0, #0) =10 (t=0)

Ici, d et k sont des constantes positives. d est la constante d’amortissement,
et k est la constante de raideur du ressort.

Discutons brievement d’olt vient cette équation différentielle. Selon la loi
de Newton, 'accélération d’une particule vaut la somme des forces exercées
sur la particule, fois la masse qui ici est 1,

#(t) = F(a(t))-

Supposons d’abord qu'il 'y ait pas de milieu (i.c. le wagon est dans le vide).
Alors la seule force qui agit est celle générée par le ressort. Selon la loi de
Hooke, cette force est proportionnelle a I'élongation. Done

#(t) = Fla(t) = —ka(t)
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oit k est une constante qui ne dépend que du ressort (son matériel, sa
géométrie), comme affirmé. Evidemment, la loi de Hooke n'est valable que
pour de petites élongations. (Pour un grand 7, le ressort se rompt, ...)

En présence d’un milieu, ce milieu exerce une force an wagon : le miliea
e freine! Cette force est opposée au sens du mouvement, et des expériences
‘montrent qu'elle est proportionnelle 4 Ia vitesse. Dans la loi de Newton, nous
devons donc ajouter le terme —2di(t) 4 la force F(z(1)). Ici on écrit —2d au
lieu de —d pour tomber sur des solutions plus jolies (voir en bas).

1l est clair que la solution ne va pas seulement dépendre de la position
initiale #(0) = z mais aussi de la vélocité initiale #(0) = vo.

Solution de (x) pour d =0
La solution de I'équation différentielle #(t) + k(t) = 0 est

2(t) = crcos(VEL) +cpsin(VEL), e €R. m

Tei ¢4, ¢ sont des constantes quelconques. (On vérifie facilement que ce sont
des solutions. Qu'il n'y a pas d’autres solutions est montré au10.2.) Notons
que Tensemble de solutions (1) forme un espace vectoriel sur R de dimen-
sion 2.

Pour satisfaire la condition initiale dans (x) nous calculons

2o = 2(0) = ¢y co5(0) + csin(0) = ¢y
vy = #(0) = —Vk ¢;5in(0) + ¢ VE cos(0) = &, VE

d'olt¢; = xg et ¢ = % La solution du probléme avec condition initiale (x)
est done

() = w0 cos(VE1) + 7 sin(VE()

Cest en fait un oscillateur harmonique (cad. un cos pure), voir le 10.5.

Plus généralement, une équation de la forme

2™ () + an_y @ D() + -+ a, () +apz(t) = 0 (*)

oitles a; € C sont des constantes données et la fonction z(t) est cherchée, est
une équation différentielle linéaire homogéne a coefficients constants.

Elle est dite homogéne car le c6té droit est 0. Elle est dite linéaire parce
que, évidemment, l'espace des solutions forme un espace vectoriel sur C.
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Comme nous allons le voir au 102, si a, # 0 alors sa dimension est n. De
plus, la solution est unique si on impose les n conditions initiales

2(0), (0), £(0),...,z"1(0). (&)

On peut construire la solution en calculant les racines dun certain po-
Iynéme de degré n, & aide de I'algébre linéaire, voir le 10.3. C'est une belle
application de Ialgébre linéaire & Panalyse, rappelant celle faite au 9.6, mais
plus importante.

Une équation différentielle linéaire inhomogéne & coefficients constants
est de la forme

() + 2O 4+ ai() aor(t) = a))  (+x)
oit ¢ est une fonction continue donnée.

Exemple. Nous considérons & nouveau le wagon dans un milieu homogéne,
attaché & un mur par un ressort. Cette fois, le wagon est aussi attaché par
un Tessort & un moteur tournant 4 vitesse angulaire w, comme dans le dess

En ajoutant la force de ce deuxiéme ressort, nous obtenons que le mouvement
du wagon est décrit par Iéquation différentielle inhomogéne

& (ED) () +2di(t) + ka(t) = Kcoswt  (tER)
@) w0)=x, 0)=1 (t=0)

La constante K > 0 dépend de la géométrie du deuxiéme ressort et du
moteur.
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Comme en algébre linéaire, Vespace des solutions de (+«) est un espace
affine, constitué des fonctions

y(t) +vp(t)
ol y({) satisfait (+) et ,(¢) est une solution particuliere de (+x). Il existe
une méthode explicite, basée sur U'intégrale, pour trouver un gy, voir le 10.6.
10.2 Unicité et estimation de la dimension
Une équation différentielle linéaire est une équation de la forme
Y +an g™ 4y ey = g(a). (L)

Ici, les fonctions ag, ... ,an_; et q sont des fonctions R > I — C continues
données. Une solution est une fonction y: I — C qui est n fois dérivable et
satisfait la condition (L). L'entier n est I'ordre de I'équation différentielle, q
son inhomogénéité. L'équation différentielle

™ 4ty 4ot ay +agy = 0 (H)
est I'équation homogene associée & (L).

Le fait suivant, qui est évident, est bien connu de I'Algébre Linéaire.
(i) Siys ety sont des solutions de (L), alors ys—y; est une solution de (H).
(i) Siyo est une solution de (L) et yy est une solution de (H), alors yo+yn
est une solution de (L).
Pour trouver toutes les solutions de (L) nous devons done résoudre les
deux problémes suivants.
1. Déterminer toutes les solutions de Uéquation homogéne (H)
2. Déterminer au moins une solution de U'équation inhomogéne (L).
Soient ...,y des solutions de (H). La linéarité et Ihomogénéité de
Péquation (H) impliquent que toute combinaison linéaire ¢, yy + - - + ck v

(ol ¢1,...,cr € C) est & nouveau une solution de (H). L'ensemble des so-
lutions de (H) forme donc un espace vectoriel £ sur C. Dans le cas ol les
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coefficients ag,...,a,_, sont constants, nous allons construire en 10.3 une
base de n fonctions de £.

Un processus décrit par (L) est généralement accompagné de n condi-
tions initiales

u(z0), ¥/(0), ... ¥ V(o) (n

en un point 7, € I. Par exemple, pour Iéquation d’un mouvement avec
n=2etz—t=le temps il s'agit de la position initiale y(to) et de la vitesse
initiale ({5). Nous allons montrer qu'une solution y de (L) est entiérement
déterminée par les n valeurs (CI).

Lemme. Soit Y: I — C une fonction dérivable sur un intervalle 1. Si Y
satisfait sur I Vinégalité

[V'| < C|Y| pour une constante C >0
et 5i Y (wo) = 0 pour un o € I, alors Y = 0.
Preuve. a) Nous traitons d’abord le cas spécial ¥ > 0. La fonction
f=veos

est décroissante (car f' = e=C*(Y' — CY) < 0) et f(x,) = 0, d'oit f(z) <0
pour z > zo. Ceci et ¥ > 0 montrent Y (z) = 0 pour z > zo.
En regardant Ye” on montre similairement que Y () = 0 pour z < zq

b) Le cas général se réduit au cas a) via la fonction y := Y V. En effet,

Wl = |[Y'Y+YY| <2|V'Y| < 2C|YY| = 2Cy.

D'aprés a) nous avons y = 0 et donc ¥ =

Théoréme dunicité. Soient y;,y,: [ — C deus solutions de (L) ayant les
mémes valeurs initiales au point 7o € I :
5 G
y¥(zo) = ¥(z0), k=0,...,n—1.

Alors y, =y sur tout I.

Preuve. 11 suffit de montrer que y; = yo sur tout intervalle compact J € I
avec zg € J. Comme les coefficients a; sont continus, il existe une constante
A> 0 telle que |a,(z)] < Apourz € J et i =0,...,n—1.
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Appliquons le lemme &

La fonction Y est dérivable, car y est n-fois dérivable, et on a

w2
-y (yxk)y(km + y<k+!>y<~)) D 4y,
=

Comme [y®] < V¥ pour k =

son—Tet |y™|

> as®| <nav¥
=

sur .J nous obtenons

V| < CY  pour C:=2n(1+A)—2.

De plus, Y (z5) = 0. Le lemme montre donc que ¥ = 0, cad. y = 0, cad.
Y1 =Y. o
Conséquence. (i) L ’espace vectoriel compleze £ des solutions complezes de
Péquation homogéne (H) d’ordre n est de dimension < n.

(i) i y1r-..,n sont n solutions linéairement indépendantes de (H), alors
toute autre solution y de (H) est une combinaison linéaire

Yy C1yi+--+cnln  avec ci,...,cn €C.
Preuve. Fixons un point z, € I. L’application “condition initiale”

B LT, B) = (o), (o)., v () @)
est clairement linéaire, et d’aprés le Théoréme 1 elle est injective, d'oi

dim£ < dimC" = n.

Laffirmation (ii) est une conséquence de (i) et de IAlgébre Linéaire. O

Application. Déterminons toutes les solutions de équation doscillation

y'=-y ou y'+y=0
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Cette équation est homogéne et d’ordre 2. Lensemble de ses solutions forme
donc un espace vectoriel sur C de dimension < 2. On voit tout de suite
que les deux fonctions € et e~'* sont des solutions, qui sont linéairement
indépendantes (car ae’® + b~ = 0 pour tout « € R implique a = b —
0). L'ensemble des solutions consiste donc en Iensemble des combinaisons
linéaires

y = cre” +cpe” e €C.

Les fonctions Rey et Imy sont des solutions réelles.

10.3 Systeme fondamental pour ’équation ho-
mogene
Hypothese : Pour la suite de ce chapitre nous supposerons que les coeffi-
cients des équations différentielles (L) et (H) sont constants :
ao,...,an1 € C.

Si pour résoudre Péquation d’oscillation 3" +y = 0 nous faisons 'Ansatz
= e 011 A est une constante , nous obtenons I'équation

A24+1)eM = 0.

Les solutions A = i et A = —i nous donnent justement les deux fonctions
% et e, qui forment une base de Pespace £ des solutions de Iéquation
d’oscillation.

Pour trouver les solutions de 'équation homogéne (H), nous faisons done
T'Ansatz y = e’ avec une constante A & déterminer. Une telle fonction satis-
fait T'équation (H) ssi

(A" + any A" oo+ ag A+ ag) €
cAd. ssi A est une racine du polynéme
P(z) = 2" +ap 2" '+ +a; v +ag.

P S'appelle le polynéme caractéristique de I'équation différentielle.

Si P posside n racines différentes Ay,. .., An, alors

N
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sont n solutions différentes de (H). Nous montrerons plus loin que ces solu-
tions sont linéairement indépendantes. D’aprés Ia Conséquence dans le  10.2
elles forment donc une base de I'espace des solutions de (H).

Si P posséde des racines maultiples, le nombre de racines différentes de P
est plus petit que n. Néanmoins, il existe également 1 solutions indépendantes
dans ce cas, car A toute racine A de multiplicité k on peut associer k — 1 so-
Iutions indépendantes différentes de e**. Nous allons trouver les solutions
manquantes par une considération heuristique. Regardons une racine mul-
tiple A comme la limite de racines proches A et A+ AX. Avec e\ et e+ANT
la combinaison linéaire 1

(+aNz
A -
est également une solution, qui tend vers ze** quand AX — 0. Nous allons
montrer : Si A est une racine de multiplicité k, alors les k fonctions

&)

&, zed, ohled

sont des solutions de Iéquation différentielle.
Théoréme 2 (Systeme fondamental)
Soit P le polynéme caractéristique de Uéquation homogéne (H), et soient
Atss Ay les différentes racines de P et
Fiy... ke leurs multiplicités respectives.
Alors (H) posséde les n solutions linéairement indépendantes suivantes :

pour i les ki solutions M=, zeM®, . ghi-tehE,

pour X les ky solutions 5%, zedsr, . phat haz,

pour A, les k, solutions M=, zed, .. gh—l b,
Toute solution de (H) est une combinaison linéaire de ces n solutions.

Conséquence : Léquation (H) posséde, pour des conditions initiales arbi-
traires (o, an_1) € C* au point 2o, une unique solution y avec

. S

y P (z0) =,  k=0,.
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Preuve. Considérons 'application linéaire ®: £ — C" donnée dans (2).
D'aprés la Conséquence dans le  10.2, & est injective, et d’aprds le Théoréme 2,
P est surjective. a

Pour prouver le Théoréme 2 il sera utile d'écrire une équation différentielle
linéaire via un opérateur différentiel linéaire. Soit P un polynome a
coefficients complexes,
P(X) =Y a X"
=

On définit pour une fonction n-fois dérivable f la fonction

PD)f = (z"ja,D”) I= znjay(n"/)

Par exemple, P(D) e = P(}) e,
En utilisant cette notation nous pouvons écrire les équations différentielles (L)
et (H) comme
PD)y=q et PD)y=0.
Régle de décomposition : Pour deuz opérateurs P,(D) et Py(D) donnés,
ona

(PP)(D) [ = P(D)(Pa(D)J). 3)

A droite, on applique d’abord Py(D) et puis Pi(D); & gauche, on multi-
plie d’abord (D) et P(D) comme des polynémes, et ensuite on applique
Vopérateur ainsi obtemu. La régle (3) se vérifie aisément par un caleul. Elle
implique la régle

Régles de caleul : (i) Pour une fonction k-fois dérivable [ et pour A € C
ona

O =N (7o) = [ e )
(ii) Pour un polynome g # 0 et pour A, € C avec A+ on a
(D= N*(ge") = he*” ()

oit h est un polynome de degré degh = deg g ; en particulier h #0.
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Preuve. (i) L'application de I'opérateur D — A donne
(D=X) (J&¥) = fle 4+ Afee—Afel = fle,

Lapplication de Fopérateur (D — A)¥ donne donc f®) eX2,
(ii) L’application de D — A donne

(D—X)(ge") = g'e"™ + pge'™ — Ageh™ = het™

oit h = (jt— A)g +¢'. Cest un polynéme de méme degré que g. Répéter cet

argument k fois. a
Lemme d’indépendence. Si pour des nombres Ai...., A € C différents
deus i deus et pour des polynémes gy,...,g, on a Videntité

a(2) e 4+ g(z) M = 0 pour tout z €R, *)
alors gy = --- =

Prewve par induction sur 1 : Pour r = 1 Vaffirmation est triviale. Pour prou-
ver Iétape d'induction r — 1~ 1, nous choisissons & > deg g, et appliquons
Vopérateur (D — Ar)¥ a (). D'aprés (4) et (5) nous obtenons

()€ + -4 hy_i(2)ed T = 0 pour tout z €R

oit hy, .., hy_; sont des polynomes avec h, # 0 si g, # 0. L'hypothése d'in-
duction montre que h; = hy_y =0, d'olt gy = -+~ = gr_y = 0, d'oit (%)
montre qu'également g, = 0. o

Aprés ces préparations nous sommes préts pour la

Preuve du Théoréme 2.
a) Pour prouver que toutes les fonctions z°e** avec s < k, — 1 résolvent
Téquation différentielle P(D)y = 0, nous observons que la décomposition

P(z) = Q@) (z — )"

et la régle (3) impliquent la décomposition

P(D) = QD) (D~ Xy)*.
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Ceci et (4) et k, > s montrent
PD) (#e) = QD) (D -e>7)
= QD)0 = 0.
b) Pour prouver I'indépendance des n solutions, supposons que

r ke
Y > ey?ed® =0 pourtout xR
==
ki1
="y cette identité devient
=

oit ¢;; € C. Avec gi(z)

> aix)e? =0 pourtout z€R.
=

Le Lemme d'indépendence montre que g; = g, = 0, d'oli ¢i; = 0 pour
tout 7, j. o

Exemple : y® — 3y + 3y —y/ = 0.

Polynéme caractéristique : ~ P(X) = M —3)\ +3)2 = X;
Racines : 0 simple, 1 de multiplicité 3;
Systéme fondamental : &, ¢, ze?, 2%,

Solutions réelles

Supposons maintenant que les coefficients ag, . . ., ¢n_; de Péquation différentielle
PD)y = 4™ +an 13"+ + a0y =0

sont réels. Dans ce cas, on ne s'intéresse souvent qu’aux solutions réelles. On
les trouvera & l'aide des solutions complexes :

Lemme. La partie réelle u et la partie imaginaire v d’une solution compleze
z=u+iv de Uéquation (H) sont des solutions de (H).

Preuve. Comme 2 = u(® +iv®, T'identité P(D)z = 0 devient

(™ + ap_ u® Y + - agu) +i (0™ + ap_ 0™V 4t ag)
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Les sommes dans les parenthéses sont réelles et donc s’annulent. o

Une racine réelle A du polynéme caractéristique P de multiplicité k donne
les k solutions réelles

&, 7, gkl (6)

Les racines non-réelles du polynome caractéristique apparaissent par paires
conjuguées : Soit A= a +if et X = a — i, ot  # 0, une telle paire, et soit
k la multiplicité de A et de A. La paire A, A donne les 2k solutions complexes

i)z g oatif)s | gkl glatife
0Bz g olaif)z | gkl ela—if)r
et d’aprés le lemme les 2k solutions réelles

€7 cos Bz, € cos Bz, . .., 251 e cos B, }

by
% sin Bz, 7 sin Bz, .., 71 e sin B Y

Cette recette fournit n solutions réelles de (H). Elles sont linéairement indé-
pendantes sur R, car on peut récupérer les n solutions complexes comme
combinaisons linéaires complexes de ces n solutions réelles. D'autre part,
Pespace vectoriel réel Lg des solutions réelles de (H) est de dimension < n,
car le Théoréme d’unicité montre que Vapplication linéaire ®: Lz — R*
définie comme dans (2) est injective.

Résultat : Llespace vectoriel réel Ly est de dimension n, et est engendré
par les solutions réelles de la forme (6) et (7).

Exemple : y™® +2y" +y = 0.

Polynéme caractéristique : PO)=X+2)2+1;
Racines : iet —i de multiplicité 2;
Systéme fondamental complexe : €%, zei?, o7, pe-i;
Systéme fondamental réel : cosz, sinz, x cos, wsinT.

10.4 Solution particuliere pour des inhomo-
généités spéciales

Pour des fonctions g spéciales on peut calculer une solution de I'équation
inhomogéne P(D)y = ¢ par un Ansatz simple. Cette solution s'appelle so-
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lution particuliére de I'équation inhomogéne. Toutes les autres solutions
sont obtenues en ajoutant les solutions de Péquation homogéne P(D)y = 0
déja trouvées dans le  10.3.

Théoreme 3. Soit q de la forme
q(z) = (bo+biz + - + bmz™)

et soit ji une racine de multiplicité k de P (k = 0 signifie que P() # 0).
Alors Uéquation P(D)y = g posséde une solution de la forme

w(2) = (co+ 1T+ + cmz™) ke (™)

En particulier dans le cas m = 0 elle posséde la solution

o) = Japi e )

Preuve par inductions sur m. Nous utilisons la décomposition
P(D) = QD) (D — p)f,
ot Q est un polynéme avec Q1) # 0.
m=0: Daprés la régle de calcul (4) on a
P(D) () = QD) (k&) = KQ() & = P ()
doit PH)(j2) # 0 et (7°) est une solution.
L'étape m — 1~ m : D'aprés (4) et (5) nous avons
!
P(D) (z"ake) = Q(D) (L *y")' I”'e‘“) = h@@)e= (%)
!

oit h est un polynome de degré m. Comme b(z) = by + by 7+ - + by a™ est
également de degré m, il existe un G € C tel que deg(b— cuh) < m — 1.
Selon Ihypothése d’induction il existe un polynéme ¢* de degré < m — 1 tel
que

P(D) (¢} (x) k&) = (b(z) — cmh()) . (+%)

Les identités (+) et (++) montrent que la fonction

= (c(2) + cma™) kT

(@
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satisfait P(D)y = b(z) €, cad. y est une solution de la forme (77). O

Exemple : 4 —y’ = g avec les inhomogénéités g = e, %, a2,
P(X) = X* — X posséde les racines 0,1,—1.

g=e®: Onam=0,p=2Fk=0;

Solution particuliére selon (7°) : y,
Lp=1k=1;
Solution particuliére selon (7°) : y, = Jze”.
Onam=2p=0k=1

Ansatz selon (72) : y

Onam=

2% + 01T+ ) T3

onadone y® —y =6y —Bepa? — 20,0 — o =

Comparaison des coefficients : 3 = —4, ¢ =0, co =
1

Solution particuliére selon (72) : y = —a® — 2z.

Le Théordme 3 est souvent combiné avec les deux techniques suivantes :
Superposition. Supposons que I'inhomogénéité g est une combinaison linéaire,
g=aq+--+ca, o €C.

Si ...,y sont des solutions de I'équation inhomogéne P(D)y = g; pour
E=1,...,r, alors la combinaison linéaire analogue

y=ah+--+cy
est une solution de Péquation P(D)y = .

Complexification. Supposons que les coefficients du polynome caractéristique P
sont réels et que Iinhomogénéité ¢ est la partie réelle de la fonction com-
plexe Q. Si z est une solution de I'équation “complexifiée” P(D)z = Q, alors
= Rez est une solution de Iéquation P(D)y = g.

La complexification est taillée sur mesure pour les inhomogénéités de la
forme
p(z) e sin be

q(z) = p(z) e cosbr et g(z]
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ot p est un polynome réel et a,b sont des constantes réelles, car ces inho-
mogénéités sont les parties réelles et imaginaires de p(z) @)z,

Exemple : 4 — if = cosz = Re (7).

Selon (%) Péquation complexifiée 7 — z = e possede la solution

(o) = e

ot I'équation donnée posside la solution y, = Rez, = — 4 sin.

10.5 Application a I’équation d’oscillation

Les oscillations harmoniques & un degré de liberté (comme un pendule, un
ressort, un circuit électrique...) sont décrites par des équations différentielles
linéaires d’ordre 2 & coefficients constants; les oscillations libres par des
équations homogénes, et les oscillations forcées par des équations inhomo-
génes.

L Oscillations libres

Sous Phypothése que amortissement est proportionnel a la vitesse, Iéquation
de T'oscillateur harmonique libre est

§+2dy+ky =

©)

Iei, d > 0 est la constante d’amortissement, et k > 0 est la constante
d’élasticité (“constante de raideur du ressort”).

Le polynome caractéristique P(A) = A + 2d A + k possede les racines
Mo = —d=VE k.

Pour construire un systéme fondamental réel nous distinguons trois cas :

1. & < k (amortissement faible) ;

2. d > k (amortissement fort) ;

3. & = k (amortissement critique).

1. Amortissement faible. Dans ce cas on a

Mg = —dtiv  avec wi= VE—&
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La solution générale réelle est
y(t) = e (c) coswt + cysinwt) oll ¢, €R.

Si d = 0, toute solution est périodique avec la période 27 /w, ot w = VE.
Si d > 0, la solution décroit exponentiellement vers 0.

Afin de donner des applications nous déduisons une autre forme de la
solution. Ecrivons-la sous la forme y(t) = e~ Re () — icz) ). En coor-
données polaires ¢; — icy = Ae’¥ nous trouvons alors

y(t) = Ae ¥ cos(wl+ ).

¢ s'appelle la phase de l'oscillation.

y()

FIGURE 10.3 - Oscillation faiblement amortie avec phase p = —m/2.

Une condition nécessaire pour avoir un maximum d’élongation |y(t)| d'une
solution y # 0 est §(t) = 0, ce qui nous donne tan(wt + ) = —d/w. Les
maxima d’élongation se succédent donc a intervalle constant 7/w, et leur
proportion est constante :

2. Amortissement fort. Dans ce cas, A et A, sont réels, différents et
négatifs. La solution générale est

At

y(t) = ceMt + e’ oh o, R
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(1)

FIGURE 10.4 - Oscillations fortement amorties.

Comme Ay, A < 0, la solution décroit vers 0 quand ¢ — oo. Toute solution
# 0 posséde au plus un extremum et passe au plus une fois par zéro.

3. Amortissement critique. Dans ce cas, \; = Ay = —d est une racine
réelle double. La solution générale est

y(t) = (cr+est)e ™.
Toute solution # 0 décroit exponentiellement vers 0 quand ¢ — co, posséde
au plus un extremum et passe au plus une fois par zéro. Les graphes sont
similaires & ceux du cas précédant.

II. Oscillations forcées

TFtudions un oscillateur harmonique soumis A une excitation extérieure pé-
riodique K coswi de fréquence w, ot K,w > 0. L'équation différentielle &
résoudre est

ii+2dy+ky = K coswt. (10)

Si Pamortissement est faible, Voscillateur libre possede, d’aprés la partie T,
une fréquence propre, notée maintenant wy := vk — d2.

Pour trouver les solutions de (10), il nous faut ajouter aux solutions
de Iéquation homogéne (9) trouvées dans I une solution particulitre 3, de
Péquation inhomogene (10). Pour trouver une telle solution nous considérons
Péquation complexifiée

F42di+kz = Kebt, (%)
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En appliquant le Théoréme 3 il faut distinguer deux cas :
1. iw n'est pas une racine du polynéme caractéristique P;
2. iw est une racine.

Cas 1: Comme P(iw) = k—w? +i2dw, le cas 1 a liew ssi k # w? oud # 0.
Dans ce cas, d'aprés (7°) Péquation (9c) posséde la solution particulitre

%(t) = (11)

En coordonnées polaires
K
Pliw)
oit A = | K/ P(iw)|, nous obtenons z(t) = Ael@*+#), Pour Péquation réelle (10)
nous trouvons donc la solution particuliére

Ae¥

() = Rez(t) = Acos(wt +¢). 2)

Cette solution représente une oscillation harmonique non-amortie de fréquence w
égale i la fréquence de Pexcitation et d’amplitude
K | IK|

A= |5 = ——.
P(iw) (k—w?)? + 4d2u?

Etudions les solutions de (10) pour ¢ grand dans le cas d > 0 : Toute
solution y(t) differe de la solution () par une solution de Iéquation ho-
mogene (9). D'aprés I, ces dernitres décroissent vers 0 quand ¢ — co; on a
done y() — yy(t) = 0 pour ¢ — co. Bref : Dans le cas d > 0 toute solution
de (10) se comporte comme la solution particuliére (12) pour t grand.

Cas 2 : Ce cas a liew ssi d = 0 et w? = k, cad. ssi Péquation (10) est de la
forme particuliete

j+uwly = K coswt. (%)

iw est une racine simple de P, car —iw est également une racine. D'aprés (79),
Véquation complexifide %+ w?z = Ke™ possede done la solution

K
(1) = 5 te
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(), yp(t)

FIGURE 10.5 - La solution particuliére y, et une autre solution y.
Comme solution particulitre de (9g) nous obtenons donc

wlt) = Rezp(t) = %Lsinwl (13)

Cette solution n'est pas bornée & cause du facteur ¢. Comme toute solution
de Péquation homogéne (9) est bornée, il découle quaucune solution de (9g)
st bornée : catastrophe de résonance !

(1)

FIGURE 10.6 - La solution particuliére y, = £ tsinwt.
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10.6 Solutions particuliéeres pour une inho-
mogénéité générale

Dans ce paragraphe nous montrerons comment pour une inhomogénéité arbi-
traire continue le caleul d'une solution particulitre peut étre réduit au caleul
d’une primitive.

Théoréme 4 (Variation des constantes). Soit y,...,yn une base des
solutions de Uéquation homogéne P(D)y =0 d’ordre n.

(i) Pour toute fonction q: I — C sur un intervalle I le systéme d’équations

oo ) [m 0
v W uz :
: : : "o -
o e )
posséde une unique solution uj, ..., un.
(ii) Si Us,...,Un sont des primitives de s, ..., un sur I, alors

Yp = Uiy +--+ Unn

est une solution particuliére de Uéquation inhomogéne P(D)y = q.

Remarque. Toute combinaison lindaire ¢y 1 + -+ + ¢a yn, 0kt ¢, € C, est
une solution de I'équation homogéne. D'aprés le théoréme on obtient une
solution de Iéquation inhomogéne en remplacant les constantes ci, ..., c
par des fonctions appropriées Us, ..., Un. Clest pourquoi la méthode décrite
dans le théoreme s'appelle variation des constantes.

Pour n = 1 le polynéme P(X) est de la forme P(X) = ag +a;X. Nous
pouvons supposer que a; = 1, et nous posons @ = —ao. L'équation homogéne
P(D)y =0 est donc

'(z) = ay(z).

Une base pour les solutions est y(z) = %, La solution u; dans (i) est

w(z) = q(z)e
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Si U, est une primitive de q(z) e, alors (ii) dit que
Ui(a) e

est une solution particuliere de P(D)y = g. Ceci est la Proposition VC du
10.7 pour le cas spécial d’une fonction a(r) constante.

Preuve. (i) Ecrivons Y (x) pour la matrice du systéme d’équation (14) au
point & € I. Il suffit de montrer que pour tout = la matrice Y (z) est de rang n.
Si pour un o le rang n'était pas n, nous trouverions une combinaison linéaire
non-triviale des colonnes de Y (zo) représentant le vecteur 0, cad. une fonction
Y= ciy1 + -+ cava telle que y(zo) = ¥'(x0) = -+~ = y@V(z) = 0. Selon
le Théoréme d’unicité du 102 on aurait done y = 0 sur /, ce qui contredit
Pindépendance linéaire des vy, . ., yn

(i) En utilisant Péquation (14) nous trouvons par induction sur k que

S Uyp sik=0,...,n—1,

g = (15)
S U +q sik=n
=t

La linéarité de lopérateur différentiel P(D), les identités (15) et les identités
P(D)y, = 0 pour v = 1,...,n montrent que

PD)y = > U, PD)y+4q = q
=

Exemple. ' +y =

cosz
Un systéme fondamental de I'équation homogéne est donné par les fonctions

sin et cos. Nous cherchons d’abord les solutions du systéme d’équations (14),

cad. de )
(& 2 () = ()

. " sin  cos «
En inversant la matrice ( ) nous trouvons les solutions
cos

—sin

() = (= 23 () = (o)
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De plus, U; == z et Uy = In(cos) sont des primitives de u; = 1 et de
4, = — tan sur [ Une solution de Péquation différentielle est donc

= zsinz + (In(cos z)) cos .

Yy

Supposons maintenant que Pinhomogénéité g est une fonction continue.
Comme les fonctions yi,. .., yn sont n fois dérivables, les coefficients de la
matrice Y (z) dans (14) sont des fonctions continues sur /. La formule pour
Ia matrice inverse ¥ ~!(z) bien connue de IAlgébre Linéaire montre que les
coefficients de ¥ ~!(z) sont des fonctions rationnelles des coefficients de Y (z) ;
ce sont done également des fonctions continues sur 1. Il suit que uy, ..ty
sont continues, ot intégrables. Nous pouvons done appliquer le Théoréme 4.

10.7 Quelques EDs non-linéaires résolubles par
intégration

Tout processus naturel ou technique pour lequel un principe de superposi-
tion est valide est décrit par une équation différentielle linéaire. Toutes les
équations considérées jusqu'a présent étaient linéaires.

Mais il existe d'autres types importants d’équations différenticlles.

Exemple. Soit, de nouveau, p(t) le nombre de poissons dans le lac au temps £.

Les hypothéses (Hi)-(Hs) ne sont pas trés réalistes! Il est plus réaliste de
supposer que le taux de reproduction f (cad. la fertilité moins la mortalité)
dépend de ¢ (des saisons, ...) et de p(t) (beaucoup de poissons ~» moins de
nourriture, ...) :

{(ED) B0 = J(Lp0)p(t)
€ p0) =m

Nous savons déja que la solution est p(t) = poe/* si f est constante. Nous
allons maintenant voir deux méthodes qui permettent de résoudre (ED) dans
deux cas spéciaux :

I si f(Lp(t) = f(t)
1L si f(6,p(1) = 9(t) - h(p(1)-

Notons que I1 est plus générale que L.
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I. Equations différentielles de premier ordre

Nous considérons, un pen plus généralement, les équations différentielles de
premier ordre

¥'(z) = a(z) y(x) +b(z) (ED)
ot a,b: I — C sont des fonctions contimues.
Léquation
¥(z) = a(z)y(x) (EDy)

ppelle 'équation homogéne associée & (ED)
Rappellons du 102 que

Si yy est une solution particuliére de Uéquation inhomogéne (ED),

alors toute solution de (ED) est de la forme

Y=1Yp+yn
0l Yy est une solution de Uéquation homogéne (EDy).
Pour trouver toutes les solutions de (ED) nous devons done résoudre les

deux problemes suivants.
1. Déterminer toutes les solutions de I'équation homogéne (EDj).

2. Déterminer au moins une solution de 'équation inhomogéne (ED).
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Solution de 1. Les solutions de (EDy,) sur I sont les fonctions

y(@) = ce’® i ceC et A(z):/ als)ds avec zo€ 1. (%)

Preuve. Ces fonctions sont des

solutions de (EDy,), car

y(z) = cA'(2)e*® = ca(z)e’™ = a(z)y(z).

Inversement, si y(z) est une solution de (EDy), alors

(e ) =yer+y

d’olt ye est constante.

Si on a oublié la formule (x),
suit.

(—AYe ™ = ( —ay)et =0
o

on peut la retrouver heuristiquement comme
a(z) y(z)

a(z)

a(z)

/: a(s)ds = A(x)

A(z) + Iny(zo)
el

¢ AE)

&

Solution de 2. Pour trouver une solution particuliére y, de Iéquation (ED)
nous utilisons la méthode de “Variation de la constante” d’Euler :

Nous partons d’une solution ceA®) de Péquation homogéne (EDp) et faisons

I'Ansatz

yy() = c(z)e

Alx)
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oit la fonction c(z) (la variation de la constante ¢) est & déterminer. Une telle
fonction y, résoud (ED) si et seulement si

Yo) = d(2)er® +clz) A'(z) AD
= alw) clx) e +b(z)
cad. si et seulement si
(x) = bx) e A,
Nous avons prouvé la

Proposition VC. Soit A une primitive de a est B une primitive de be=*.
Alors Uensemble des solutions de (ED) est

{y(@) = (B(z) +d) e"® |d e C}.
Conséquence. Le probléme de Cauchy

(ED)  ¢/(2) = a(z)y(x)+b(x)
€)  yl@) =

avec a,b: [ — C continues posséde une unique solution sur I.

Preuve. Choisissons

A(z):/xu(s)ds et Bz /Ib(s)e"(’)ds

comme primitives. Alors la fonction

(@) = (Blz) +d) '@

satisfait
y(z0) = (B(zo) +d) ) = yo
~ >
si et seulement si d = yo. o

Exemple 1. ¢y =2zy+ 1
Chemin direct : Solution de I'équation homogéne : ce”*, ceC
Une solution particulitre est : ~ —1
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Solution de (ED) : —L+ee?, ceC

A T'aide le la Proposition VC :
Primitive de a(z) = 2z : A(z)
Primitive de b(z) e A®) = z¢ B(z)

Solution de (ED) : (~4e~=* +¢) e = L +ce”’, ceC

Exemple 2. Solution de la loi de refroidissement de Newton
Est donné un corps de température homogéne T'(t) dans un milieu de température
homogéne M(t).

Clairement, la chaleur est transmise du haut vers le bas (du corps vers le
milien ou vice versa). Dans beaucoup de cas, le changement 7(t) de T'({) est
proportionnel & Ia différence T/(t) — M(t) :

T(t) = —B(T(t)— M(1)), B >0. (LN)
Résolvons cette équation différentielle dans le cas
M(t) = a—yt ot a€R y>0.
Un tel M modélise, par exemple, le refroidissement de I'air pendant la muit.
Par la Proposition VC, avec
at)=—F  bt)=BM()
Aty =—Bt  b(t)eAO = BM(t)
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nous trouvons
() = (/@M(L) e+5‘dt+d) ef,  deC.

Par intégration par partie, ceci devient ...

= ((cx—ywr %) e‘”+d) e

= (a—ﬁ/t+%)+de"”, deC.

Les solutions réelles sont done
T(t) = a—qt +1+de™,  deR.
o

Si 7 = 0 (température extérieure constante) nous trouvons que 7(t) tend
vers M({) = a exponentiellement vite :

lim T(t) = a.

oy
Siy > 0 (refroidissement pendant la nuit), alors la difference T(t) — M(t)

tend exponentiellement vite vers

(T(t) = M(1) = % > 0.

lim
oo

II. Séparation des variables
Nous considérons I'équation différentielle
#(t) = g(t) h(z(1)) (ED)
ot g: [ > Reet h: J — R sont des fonctions continues, et h(z) # 0.
(ED) est une “équation différentielle & variables séparées”.
Heuristiquement et en pratique, on trouve sa solution comme suit :
1. Rééerire (ED) comme
dx

T = o0 ha(v)
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2. Séparer les variables :
I
e )
3. Intégrer :
Lt [
——ds = [ g(s)ds
zo 1(s) to

4. Résoudre cette équation pour z(f

Justifions cette recette : Soit z(t) une solution de (ED) avec z(to) = o.

Alors 4
La(t) = o) h(z(r), tel.
Comme h # 0 nous pouvons réécrire cette équation comme
d
@zt
&™) _
PEO

et en intégrant nous trouvons

/‘hz(s

Comme g et } sont continues, il existe

/,:g(s) ds.

une primitive G de g :

une primitive H de  :

Par la chain rule,
2a(s)

L i) = Haw) &

doit Péquation précédente s'écrit comme

[B d;‘iy(z(s))ds =
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En appliquant le TF,

H(z(t) — H(z(t)) = G(t) = G(to) ()

cad.

H(z(t)) = H(zo) + G(t) — G(to)-
Résolvons maintenant cette équation pour z(t) : Comme H'(x) = T‘z) #
0, la fonction H est strictement monotone, d'oi Iexistence d'une fonction
réciproque H-". Elle est de classe C', et
2(t) = H™' (H(zo) + G(t) — G(to)).-

Si g(t) = 1, on obtient

2(t) = H- (H(zo) +t—to),  on H'(x) =

() montre que nous avons démontré la recette suivante :

Pour résoudre Uéquation différentielle
i(t) = g(t) h(z(t)), =z(t)) =70 avec h#£0

il suffit de résoudre l'équation

L %ds = [:g(s)ds

Exemple 1. Considérons 'équation différentielle

i(t) = 2*(t).

pour = = x(1).

Ici, g(t) =1 et h(z) = 2.
Pour la condition initiale o = 0 on a la solution z(t) = 0.
Soit maintenant xo # 0. Alors h(x) # 0 pour z # 0. Notre recette donne

. g
/lzds:/us
ro S to
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Choisissons £y = 0. Alors

Tg
T—xol

On voit que pour 7o # 0 la solution z(t) nexiste pas pour tous les temps

t € R. En effet, soit par exemple z, > 0 et posons T' ;‘; Alors
limz(t) = +oo.

La solution n’existe donc que pour ¢ < T T‘a Notons aussi que le “temps
de fuite & +00” dépend de la condition initiale zo.

a(t)

-1

to[=0

FIGURE 10.7 - Les solutions z(1) = 22— de &(t) =

=

Bien que la fonction 72 soit trés simple, il y a donc une sorte d’explosion
pour les solutions de (t) = z%(t). Qualitativement, on peut comprendre
ceci de maniére géométrique. Sur I'axe 7, dessinons au point = le vecteur de
longueur 2. Si nous regardons la solution z(t) de (x) avee, disons, z(0) =
2o > 0, non pas comme graphe mais comme courbe z: I — R, alors z(t) est




rId625.jpg
10.7. Quelques EDs non-linéaires résolubles par intégration 221

- -
P— = -
2

= Kol 0 1

FIGURE 10.8 - Le “champ vectoriel” h(z) = z?

telle que le vecteur vitesse (1) vaut 2%(). La courbe z(t) devient done de
plus en plus rapide, et en fait elle échappe & linfini en temps fini.
Exercice’ Pour lesquelles des équations différentielles suivantes les solutions
existent-elles pour tous les temps ?

() = az(t)+b (a,beR),
(t) = =(t) mz(t),
i(t) = «"5() (> 0).

i
o

t)
t)
Si les solutions n'existent pas pour tous les temps, calculer le temps de fuite
pour la condition initiale z(0) = 1

Exemple 2. Considérons le probléme de Cauchy

i(t) = 2V, 2(0)=0.

La fonction 7, (t) = 0 est une solution. Mais il y a d’autres solutions ! En fait,
fixons a < 0 < 3, et définissons

—(t—a)? si t<a
Zap(t) = 0 si a<t<p
(t=B) si t2p8

Alors 7a,5 est une solution. Nous le vérifions pour ¢ < a :

3 s = S (op)
= —t-a)
— a1

= 2v/fa—1p
= 2| - (t—)?

= 2y/lzas(®)]
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zas(t)

FIGURE 10.9 - La solution x4 5(t) et d’autres solutions

On peut aussi prendre @ = —00 ou # = +o00.

Interprétation. Le niveau de vin dans un fitt avec un trou au fond est décrit
par une ED de cette forme (voir les TP). Une fois que le fiit est vide, il est
impossible de savoir & quel moment il Sest vidé.

Dans le cours de Systémes dynamiques on pourra apprendre :
Pour Uéquation différentielle

#(t) = f(x(t))

avec f Lipschitzienne, la solution est unique.

Notons que f(x) = y/Ja] w'est pas Lipschitzienne.
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Convergences et espaces
fonctionnels

Voici un probléme qui apparait souvent. Soit f: [a,b] — R une fonction
définie par une limite,

J = lim fo

Nous aimerions appliquer une limite & f, par exemple

fs

(Pourquoi dit-on que £ ou [ sont des limites?)
Question : Peut-on interchanger ces deux limites ?

Dans les deux exemples, la question prend la forme

d d
L0~ A e © pn (o)

/ I / (1 fue)) = 2 "Lgn;/bfn(z)dz

Une réponse affirmative serait souvent trés utile. Par exemple si les f, sont
les polynémes de Taylor d’une fonction lisse f, ceci dirait qu'on peut dériver
et intégrer la série de Taylor terme par terme.

Réponse : NON ! en général, mais OUI ! si ...

223
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1 faut surtout spécifier ce que lim f,” veut dire.

Pour les suites (z,) dans R il est clair ce que “ lim z,” veut dire :

lim o =2 <= lim |z — 2|

Plus généralement, pour les suites (z,) dans R™ il est clair ce que “ lim ,”

veut dire :
lim 7, =z <= lim ||z — 2 = 0.
Ici, | || est une norme quelconque sur R™, et toutes les normes sur R™ étant

équivalentes, la convergence ne dépend pas du choix de cette norme, voir le
Chapitre 13.

Cependant, pour les suites de fonctions (f,) la notion de limite n'est pas
si claire, et en fait ils existent des notions de convergence différentes. Par
exemple, les normes L7, p > 1, du 9.4 sur les espaces R[a,b] (qui sont de
dimension infinie) sont toutes non-équivalentes.

11.1 Suites (et séries) de fonctions

1.a. Convergence point par point (ponctuelle, simple)
Soit A CRet f: A— R une fonction.

Définition. Une suite (fy, fz, fs. .. ) de fonctions A — R converge point par
point (ou ponctuellement, ou simplement) vers f: A — R si en tout point
TEA,

lim fue) = f(
ce qui s'éerit aussi sous la forme :
Vo: Ve 0 3n(z) tel que |fu(z) — (@) <& ¥n>ng

Cette notion de convergence est trés naturelle, mais n’est pas trés utile :

Exemple 1. Regardons la suite de fonctions

f: 0] 500,1],  ze falz
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10
asl
as|
a4

02

FIGURE 11.1 - Les fonctions fi, fa, f3, fs, fis, fioo

Alors f, converge point par point vers la fonction

{0, z€[0,1)

/@ 1 w=1

qui west pas continue! (C'est horrible, car ...)

Exemple 2. Regardons la suite de fonctions g,: [0,1] — R définies par le
dessin sur la Figure 11.2.

FIGURE 11.2 - Les fonctions g, g2, 02

Alors (ga) converge point par point vers la fonction g(x) = 0. Soit L(gn) la
longueur du graphe de g,. Alors L(g,) = V2 pour tout n, mais L(g) = 1,
doit

V2 = Jim Lgo) # L(Jim on) = 1

Exemple 3. Soit fy: [0, 1] — R comme dans le dessin sur la Figure 11.1.
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Alors f; converge simplement vers £ =0. On a [ fy(z) dz = § pour tout k,
dott

0= [ ferds = [ Jim fioyaz # pim [ o) e = 5

1.b. Convergence uniforme et distance (norme)
Dans les Exemples 1 et 3 la convergence n'était pas “uniforme” !
Définition. La suite de fonctions fu: A — R converge uniformément

vers f: A— Rsi

Ve > 03ng tel que |fu(z) — f(z)| <e VzeAetn>n,

On demande que ng ne dépende pas de 7, cest donc beaucoup plus fort que
de demander :

Vi Ve > 0 3ng(x) tel que |fu(z) — f(z)] < = Vn > no.

Géométriquement, la convergence uniforme signifie que pour tout = > 0 on
trouve un no tel que pour 7 > no le graphe de /i est conenu dans le =-bande
du graphe de f :

Exercice. Dans les Exemples 1 et 3 la suite (f,) ne converge pas uni-
formément vers f. D'autre part, dans PExemple 2 la suite (fa) converge
uniformément vers f.

Remarque. La distinction

convergence point par point ¢—  convergence uniforme
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R

bande. (f)

Snzno

est de méme nature que la distinction
continuité +—  continuité uniforme

Dans les TPs, la convergence uniforme est interprétée en terme d’une
norme, la norme |- . On démontre que la suite (f,) converge uniformément
vers f si et seulement si la suite (/) converge vers f au sens de la norme [-[lcc,
e

lim [/~ ull = Jim sup|/(2) — fu(a)| = 0.

o b

1.c. Continuité et convergence uniforme

Théoreme 1. Soit fo: R O A — R une suite de fonctions continues qui
converge uniformément vers la fonction f: A — R. Alors [ est continue.

Preuve. Soit a € A et = > 0. Nous devons trouver un § = 8(a, =) tel que

le—al<é = |f(z)

fla)<e

Nous le trouvons par “un argument £
Comme f, — f uniformément, il existe no tel que pour tout n > no,

|fa(z) = f(=)] < VzeA

wio

Fixons un tel n (par exemple ng). Comme f, est continue, il existe § > 0 tel
que
le—al<é = [fu(z) = fala)l <

wlao
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FIGURE 11.3 - L'argument §

Donc, si | —a < 4, alors par l'inégalité triangulaire,
(@)= f(a)] < |f(z) = Ja(z) + fa(z) = fa(a) + fala) — f(a)]
< (@) = fal@)] + [falz) = fa(@)] + |fala) — f(a)]
% 2 4 < & £
= 3 3 3

]
o

Convergence uniforme sur tout compact

Définition. Soit U C R ouvert. Lasuite fi: U — R converge uniformément
sur tout compact si : Pour tout compact C' C U la suite fi|c: converge uni-
formément.

Remarquons que cette propriété n'implique pas que f; converge uni-
formément sur U, voir I'exemple fi(z) := z* sur (0,1).

Voici une petite extension du Théoréme 1.

Théoreme 2. Soit fy: U — R, avec U ouvert, une suite de fonctions conti-
nues qui converge uniformément vers f sur tout compact. Alors f est conti-
nue.
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Preuve. (Théoréme 1, les boules fermées sont compactes)
Soit @ € U. Comme U est ouvert, il existe une boule Br(a) C U. Donc
Byja(a) C U. Selon Ihypothése, fi converge uniformément vers f sur le com-

pact Brja(a). Par le Théoréme 1, f est continue sur By/a(a) C U. Clest vrai
pour chaque a € U, d’o f est continue. o

FIGURE 11.4 - By/3(a) C By(a) C U.




rId652.jpg
230 11. Convergences et espaces fonctionnels

1.d. Intégration

Nous allons étudier le probléme [ lim fy 2 lim [ fu” seulement briévement
et prouver que la réponse est ‘oui’ si la convergence est uniforme. La raison
est que pour une autre intégrale, celle de Lebesgue, par rapport & lintégrale
de Riemann la réponse est ‘oui’ sous des hypothéses beaucoup plus faibles.
Ceci est 'un des grands avantages de Pintégrale de Lebesgue, voir le cours
Mesures, intégration et probabilités.

Rapellons de "Exemple 3 que f, — f point par point n'implique pas que
[lim f, = lim [ f,, en général.

Théoréme 3. Soit (f,) C Rla,b] une suite de fonctions intégrables qui
converge uniformément vers une fonction f: [a,b] — R. Alors f € Rla,b],

et
i s
T /n:/"gx&fn:/bf

Preuve. Lidée est : f est uniformément proche d'un f,, qui est (étant intégrable)
bien approximée par des fonctions escalier. Done f aussi est bien approximée
par des fonctions escalier.

Jn

fa—e

FIGURE 11.5 — fuse < fu —= < [ est aussi une bonne approximation de [
Soit £ > 0. Comme f, — [ uniformément sur [a, b] il existe un n tel que

lule)— f@) <= Vaelad).

Autrement dit,

fulg) = < f() < fulx) +e  Vrelad]
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Comme f, est intégrable et comme [ et [ sont monotones, nous obtenons

/:(fn— :lm—s)slfs]/g](fﬁs):/:(ms)
et donc -
os/f—ZJSZ/a

Clest vrai pour tout = > 0, o [f = [/, ie., f € Ra,b].

2e(b—a).

Pour prouver la seconde affirmation, nous utilisons des propriétés de
Pintégrale prouvées au Théoreme 2 du 9 pour estimer

[f—[f"

In
=
|
End

1A

!
N CRC

zefat]

= (0=a) IS = fallew-

Par Phypothise ||/ — /il = 0. On conclut que [ f, — [* /. o

l.e. Dérivée

Soit (f,) une suite de fonctions dans C'[a,b] qui converge uniformément
vers f sur [a,b]. On ne peut pas conclure que f € C"[a, b, voir le dessin.
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Et méme si f € C'[a,b] il nest pas vrai en général que f1 — f*: Si

Zn

Ja: [0,1] 5 R,

alors f, — f = 0 uniformément, mais f}(z) = 2"~ ne converge méme pas
point par point vers la fonction 0 = f’.
Le probleme est que f, peut “osciller” ou varier rapidement. Pour éviter

ceci, nous devons imposer que la suite (f;) converge uniformément :

Théoreme 4. Soient f, € C'[a,b]. Supposons que
1. fn — [ point par point sur [a,b],
2. f4: [a,b] = R convergent uniformément vers une fonction g: [a,b] —

Alors f € C'[a,b] et g = f' (ie. f — [ uniformément) sur [a,b]. En
particulier
f(z) = lim fi(z) Vzelab]
Preuve. (TF, Théorémes 1 et 3)
Par le Théoréme fondamental,

@) = fa+ [ RO )

Par Phypothése, f! converge uniformément vers une fonction g sur [a, b].
Comme les f}, sont continues, le Théoréme 1 montre que g est continue. En
prenant la limite n — oo dans (+) et en appliquant le Théoréme 3 nous
obtenons

1) = 1@+ oy (+%)

Comme g est continue, nous pouvons appliquer la Proposition 8 du 9.5 :
La fonction & > [ g(t)dt est dérivable, f est donc aussi dérivable, et en
dérivant Pidentité (++) nous obtenons

f(2) = (=)
e, J est dérivable et f'(z) = g(z) = lim [,(x) pour tout z € [a,5].

Comme g est continue, f € C'[a,b]. De plus, en utilisant encore une fois
Phypothése 2, f, — g = /' uniformément sur [a, b]. o
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1.f. Séries de fonctions

Comme une série est une suite spéciale, nous pouvons facilement appliquer
s résultats aux séries.

Définition. Soient gi: R D A — R des fonctions.
e ) gk converge uniformément si la suite des sommes partielles  _ gk

= =
converge uniformément.

La

Théoréme 1. Si les gi sont continues et si la série y _ gi converge uni-

=

formément, alors Y g est continue.
P

Théoréme 3'. Si g € Rla,b] pour tout k et si la séric Y g5 converge
=
uniformément sur [a,b], alors

i igk € Rla,b]

=

b oo o b

2. / Ya=3 / Gk, cad. on peut intégrer terme par terme.
. k=1 k=178

Preuve. Pour la preuve de 2., nous utilison le Théoréme 3 pour calculer

/:im; = /ﬂb'gu;gyk

=
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o
Théoreme 4. Supposons que g € C'[a,b] pour tout k et que

1. > au(x) = f(x) point par point sur [a,b],
=
2. La série Yy g, converge uniformément sur [a, b].
=

Alors [ € C'[a,b] et on peut dériver terme par terme :
(Zn) - 2w
: =

La preuve est comme celle du Théoréme 3'.

Les Théorémes 3’ et 4’ sont bien sir de grand intérét : méme si on ne
connait pas 35, g on peut donmer une série (les g connues) pour lintégrale
et pour la dérivée.

En vue des Théorémes 1, 3, 4 on aimerait avoir des critéres pour
déterminer si 3, g converge uniformément. Commencons encore avec les
suites.

Théoréme 5 (Critére de Cauchy)
Soient fu: A — R des fonctions. Sont équivalents :

1. La suite f, converge uniformément vers une fonction f: A — R,
[lfn = fll4 =0
2. Pour tout € > 0 il existe N € N tel que
[lfn=fmlls <= ¥Ymnz=N.

Preuve. (Complétude de R)
= Soit £ > 0. Sous hypothése 1 il existe N € N tel que

[lfa=flla < V> N.

wolm
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Pour m,n > N on a donc
s = fmlla < o= Flla+ W= flla < 545 =<
“«=" Fixons z € A. Comme
@) = @)l & ¥mm= N ®

Iasuite (f(z)) dans R est Cauchy. Grice & la complétude de R nous pouvons
définir

lim fy(x)
Pour m — oo l'inégalité (x) devient

fal@)—f@@)| < Yn>NetVzeA

Corollaire (Critére de Cauchy pour les séries)
Une série Y gy de fonctions gi: A — R converge uniformément sur A
=

i

i=m

<e Vn2m>N.

pour tout = > 0 il existe N € N tel que >
A

Le résultat suivant est trés utile en pratique.

Critére de Weierstrass, M-teste
Soient g: A — R des fonctions. Alors _ gi converge absolument et uni-

=
formément si

llgell, = My < 00 et > My <oo
=

Corollaire (suites via séries !)
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Soient fi: A~ R des fonctions. Si || fe— fiilla < My et Y My < oo, alors

=

la suite fi. converge uniformément.

Preuve. Par Uhypothése, la série » (fi— fi—1) converge uniformément, cad.
=

Ia suite fi converge uniformément. o

11.2 Trois applications

Nous allons maintenant donner trois théorémes dont la preuve utilise la
convergence uniforme de manitre essentielle.

1. Une fonction continue partout et dérivable nulle part

De telles fonctions ont été construites par Weierstrass en 1861. Ici nous sui-
vons Takagi 1903.

Pour n € N nous regardons la fonction f, donnée par le dessin ci-dessous.
Alors f,: R — [0,147"] est linéaire par morceaux et périodique, de période
4",

4 4

Théoréme. La fonction [ := Y [, est continue sur R, mais différentiable
=
dans aucun point x € R.

Preuve. 1. Comme | f(z)| < 347" pour tout z € R,
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Par le Critére de Weierstrass, la fonction f est donc définie par une série
uniformément convergente de fonctions continues, et done continue par le
Théoréme 1.

2. Fixons € R. Nous allons montrer que f n'est pas dérivable en z.

Pour tout n € N nous prenons

1 n 1 —n
by € {+Z 4", “i 4 }
tel que f, est linéaire sur [z, z + hy] ou sur [z + hy, z]. On peut choisir entre
[2,2 + ha et [z + hn, 2] si et seulement si & € Zhn (on regarde le dessin et
ca devient clair).
Si k < n, la fonction f; est également linéaire soit sur [z, z + hy), soit sur
[z + by, 2]

Pour k < n on a done

Je(x + ) — fi(
I

Pour k > n, cependant, h, est une période de fy, d'oi

Ji(@ + hn) = fi(x) = 0.

=ikl

11 suit que
Ja+h)—1(@) = ifk(’ +ho) —imu
= i(mz +ha) — (@)
et donc )

La suite
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est alternativement impaire, pai Quand hy, — 0 (n — o0) on
trouve done que f nest pas dérivable en z. o

Conclusion. Soit g € C' (R, R). Nous trouvons alors dans chaque =-boule B(g)
(par rapport & la norme sup) une fonction continue qui est dérivable nulle
part. En fait, avec f comme en haut, la fonction g, := g + = f est continue,
dérivable nulle part, et

llgr — glloo

FIGURE 11.6 — g, =g +&f

2. Courbe de Peano (Peano 1890) : une courbe continue remplissant
un carré

Théoreme. Il existe une courbe [0,1] = [0,1] x [0, 1] C R? passant par tous
les points du carré!

Autrement dit, il existe und application continue f: [0,1] — [0,1] x [0,1]
qui est surjective. Nous présentons ici un exemple de courbe remplissant
un triangle (d’oit on peut évidemment déduire un exemple pour le carré,
décomposé en deux triangles). La fonction f: [0, 1] — R? sera la limite de la
suite suivant.

1 est défini géométriquement comme dans la premiére figure en bas, oit
nous voulons dire que la courbe allant de a & b est parcourue linéairement;
(i.e. & vitesse constante), [0, 3] étant envoyé sur le premier segment et [3,1]
sur le deuxiéme.

Nous subdivisons ensuite le triangle en 4 et définissons Ia courbe f, comme
celle parcourant successivement les 4 triangles de la facon dont. f; parcourait
le triangle entier, voir la deuxitme figure.

Pour fs, nous coupons chacun des 4 triangles en 4 et nous les parcourons
comme dans f, voir la troisieme figure.
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b=fi(1)

h(0)=a b= (1)

On continue ainsi pour fi, fs, ..

Affirmation. La suite de fonctions fi: [0,1] — R? converge uniformément
vers une fonction f: [0,1] —R? continue et surjective sur le triangle.
Preuve. Notons L la longuenr des ctés du triangle, supposé équilateral. Lors
du passage de fi & fi41, tout point z € [0,1] tel que fi(x) appartient & un
triangle de la k"™ subdivision est envoyé par fi,; dans le méme triangle.
Comme le ¢6té de ce triangle a comme longueur 3, nous avons

[1fenr (@) = (@)l < % pour tout = € [0,1].

Par le Théoréme 5, la suite f;. converge uniformément vers une fonction
J:[0,1] = R2, et par le Théoréme 1, f est continue. Observons que /[0, 1]
est inclus dans le triangle (fermé) par construction, puisque /[0, 1] est inclus
dans le triangle pour tout k.
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f5(1)

Vérifions encore que f est surjective sur le triangle. Supposons que p est
un point du triangle qui n’appartient pas & f[0, 1]. Selon la Proposition 1 du
Chapitre V, f[0,1] est compacte dans R%. Donc R?\ f[0,1] est ouvert. Nous
trouvons done & > 0 tel que

B0 f0.1] = 0.

Ceci west pas vrai : Pour k assez grand, p appartient & un triangle de la
K subdivision inclus dans B (p); or toutes les courbes a partir de la k™
passent dans tous les triangles de la k2™ subdivision, et il est done de méme
pour la limite. a

Remarque. Il est impossible qu'une telle courbe soit également injective.
(On peut apprendre ceci dans le merveilleux cours Topologie algébrique.)

3. Théoréme de E. Borel

Soit (an)n>1 une suite quelconque de nombres réels. Il eviste alors une fonc-
tiom lisse [ € C=(R) telle que

[(1)(0)

et f(z

0 pour [z] > 2.
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Preuve. Prenons une fonction i € C*(R) telle que

0<h(z) <1pourtout z €R, h(z)=1pourz € [-1,1], h(z)=0pourz ¢[-2,2]
(voir Exercice 2 de la Série 2).

h(z)

-

Posons
ha(t) == "h(t), LER.

Alors hy € C%(R), et fia(t) = 0 pour |¢] > 2. Comme une fonction continue
sur un intervalle compact est bornée, il existe des nombres M, > 0 tels que

|P2(t)] < M, pour tout teR, 0<j<n.

Posons .
- by
nl (en)”
Alors f, € C(R) et hy(cyz) = 0 pour |cuz| > 2 et donc aussi pour [z > 2.
Définissons maintenant f: R — R par

> i)

n>0

o=l Mot 1, fule (en

J(@) =

Alors f(z) = 0 pour [z > 2.
Etape 1. f € C*(R)

Selon le Théoréme 4 il suffit de montrer que pour tout j = 0,1,2, ... la série

250 (O]

n>0
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converge uniformément sur R.

Fixons j. Pour tout n,

P = ek

(e

B (cat).

Pour n > j nous pouvons donc estimer

M et 1
o) )| <l Ma (@) 1
0l < Siey < wey <

Comme 3,4 < e < oo, le M-test montre que la série (1) converge

uniformément sur R. Clest vrai pour tout j = 0,1,2,.... En appliquant
itérativement le Théoréme 4’ nous trouvons que / € C™(R) et que

19 = 3 19, =0,1,2,...
nz0
En particulier
1900) = >~ /9(0).

nz0

Etape 2. f0)(0) = a; pour tout j
Calculons : Comme hn(t) = £ h(t) = " pour |¢] < 1 nous trouvons

EO)=0 si j#n,
h©0)=n! si j=n,
et done
190 =0 sioi#n
an (ca)"n!

ff)(ﬂ):wzn" si j=n

1 suit que f2)(0) = a; pour tout j > 0. o
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11.3 Séries de puissance

Nous appliquons maintenant les résultats du 111 aux séries de puissance.
Rappellons que ce sont des séries de la forme spéciale

> @) o fi(z)=a;27, a;€R. (%)
F=

Rappellons aussi que si R > 0 est le rayon de convergence de la série de
puissance (+) alors (x) converge point par point pour |z| < R et définit la

fonction .
f(= Mo, al<R
=

Proposition 10. Soit R > 0 le rayon de convergence de
> o = @),  el<R
=

Alors cette série converge uniformément sur {|z| < R — &} pour tout & > 0.
Si R = 0o, la série converge uniformément sur tout intervalle compact.

Preuve. (M-test) Nous avons

J(@) =Y fale)  ob fu(x) = ana™.

n=0

Soit = > 0 et 7 tel que [z] < R —e. Alors

lanz"] < lan] (R—&)" == M.

Nous devons montrer que y _ M,, < oo. Par la définition du rayon de conver-

n=0
gence,

/M, = Tmi/fas](R—o)F
= (R—e) Tm{/Jaa

1
= (R-9p <l
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Le Critére de la racine implique maintenant que  _ M,, < co. o
=
En résumé, on obtient le théoréme suivant :
Théoréme 6. (Séries de puissance)
Soit R > 0 le rayon de convergence de la série
3 e = f(2), lz| < R.
=

1. La série converge uniformément sur |v| < R — < pour tout = > 0.
2. f€C=(=R,R) et

Le rayon de convergence de toutes ces séries est R.

3. Sia,b] C (R, R), alors f € Rla,b] et

[/ = [ (ganr") dz = g[b(uﬂz")dz.

4. La primitive de f est la série

* N U,
[/:27711“' o] < R.

Le rayon de convergence de cette série est aussi R.

Bref : Dans son intervalle de convergence, on peut dériver et intégrer une
série de puissance terme par terme, et par ces opérations le rayon de conver-
gence des nouvelles séries ne change pas.
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Preuve. 1. est la proposition précédente.

2. est prouvé par induction : Posons

Alors s, € C®(R).

Affirmation. Le rayon de convergence de la suite (s,), cad. de la série

i]ﬂzl’"
=

est R.
En fait, comme lim

1, nous pouvons calculer

Em{/nla,] = Tm (¢ V/faal)
= Tm{/Jaa
1

5

D'aprés 1. les suites (s,) et (s,) convergent uniformément sur Vintervalle
{le] < R— <}, pour tout = > 0. Avec le Théoréme 4’ il suit done que

Jim @) = (Jms) @), <R
cad.
Zn%rn—! -
<

Pour Pétape d'induction on utilise le méme argument.
3. est un cas particulier du Théoréme 3.

4. suit du Théoréme fondamental et de 2. a

Exemples
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Zn

1. Prenons ¢*:=y o7 Alors R=ocoet

1
1 T E 4
bt g

2
= (0+1+z+a+m

n=0

(e

=g

comme il faut.
2. Série géométrique

lol<1, R=1.

a) Comme (—In(1 —z))’

on trouve
z

sl w =
—In(1 7A (;y)dugl c’dtszz‘:T, |z| <1
et donc
£l J
In(z+1) = 2(71)7“%, Jel < 1.

=
Tl est intéressant de comparer ce résultat avec ceux obtenus au Chapitre VIT
(par la Formule de Taylor avec reste sous forme de Lagrange) et au Cha-
pitre VIII (par la Formule de Taylor avec reste sous forme intégrale). On voit
Ia force et Pefficacité de la méthode de ce chapitre.

b) En utilisant a) nous trouvons

) =724, |z| < 1.
=

3. Si nous remplagons dans la série géométrique 7 par (—z2) nous obtenons

1 n
o= S (-yra, lo| <1, R=1.
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nous trouvons

= 4
= [ —5a
Alu’

Comme arctan’(:

P —1)" N 2n.

= ;( 1) AL di
&g

= "2:;(71) e |z| < 1.

Proposition (lien série de puissance < série de Taylor)
Soit B> 0 le rayon de convergence de la série de puissance

ianz" : f@), el <R
=

Donc, par le Théoréme 6 (2)

o)
s PO

n!

1l suit que

10
f(z) = Z‘;T‘(z . <R
i.e., f est représentée par sa série de Taylor, et la série de puissance de |
est égale d la série de Taylor de f.

La conséquence suivante était prouvée au Chapitre IV, Théoréme 3, par
une autre méthode.
Corollaire (Unicité de la série entiére)

Soient Y anz™ et 3 bya™ deus séries entiéres avec des rayons de conver-
n>0 n>0

gence positifs. Si

J(@) = Y anz" =Y baz"  pour |z| <c et une>0
=

n20
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alors
an=b  VYn>0.

Ce corollaire est & la base de la méthode “comparaison des coefficients”.
Pour expliquer cette méthode, nous I'utilisons pour trouver une fonction
f:R— R telle que

J'(t) = Af(). teR
oi1 A € R est donné. (Bien siir nous savons déja que f(t) = ce.)

Supposons que [ est donnée par une série entitre. Nous faisons donc I Ansatz
) = Z ap ™.

Donc

Y+ Danat
=

M) = Y (et

n=0

= 3
1

Si f'(t) = A(t) alors, par le corollaire,

(n+1)ans = Aag, n=0,12,...
Pourn=0: ay = Aag.
Pour n = 245 = Aay = Nag et donc a; = ;uﬂ
Par induction : an = )i:au
Done ”

= DZ “) aed  VieR

Le coefficient ao n'est pas determme\ Si nous imposons la condition initiale

1) =¢

a =c
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doit f(t) = ceM.
Par le Théoréme d’unicité du 102 c’est Iunique solution du probleme
de Cauchy

(ED)  f(1) = A/(0).
©n  JO)=e¢

voir aussi 'argument directe i la page 212. Répétons Pargument pour ce cas
le plus simple : si f(t) est une autre solution, nous regardons g(t) = f(t) e
et calculons

(1) = f@) e+ 10 (=N e = () —Af@)e™ = 0.

La fonction g est donc constante. La constante est g(0) = f(0) e = ¢-1=c,
et donc f(t) = ce.

La série binomiale

Rappelons que pour a € R et k € N les coefficients binomiaux sont définis

k+1) (k>1).

Sia €N, alors (‘;

) =0 pour tout k > a.

Sia¢N, alors (‘;) #0 pour tout k.

Un calcul direct montre que

(kjl)(k+1) = (Z)(a—k) V. (%)

Utilisons ces coefficients pour former “la série binomiale” : Nous fixons a € R
et définissons (pour les = pour lesquels cette série converge)

ba(z) :i(z)z“ = 1+r11'+u71)22+...

=

Si €N, cest un polynome! En effet,

(‘;)Ik = (1+2)® VzeR, R=oo.
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Sia¢N, alors ax = (2) # 0 pour tout k, et Videntité (+) montre que
x| _ 1G] ﬂ‘ﬂpcmkﬂm.
aa| G la—k

Si o ¢ N le rayon de convergence de la série binomiale est donc R =

Proposition. Pour chaque a € R on a

ba(x) = i (Z) = (1+2)%  |of <1

=

Preuve. Dérivons la série terme par terme :

b)) = i(:)kz""

=
(kjl) (k+1)2*

(1+2) ()

il
e
—
= 2
ou -2
®
|
N
5
iy
e
—
D
a2
-
5

= abye), |zl<l (+%)
Regardons maintenant P'équation différentille
a
) = f(x)
(PC) { 1+z
0 = 1
Selon (#) la fonction b, est une solution de (PC) sur (~1,1). La fonction

(1+7)* est aussi une solution de (PC) sur (—1,1). Par le théoréme d’unicité
du 10.2 il suit que ba(z) = (1 +2)* pour z € (—1,1). o
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Remarquons que 'unicité de la solution de (PC) était montrée aussi plus
directement & la page 212. Nous répétons l'argument dans ce cas concret : la
fonction

h(@) = bo(2) (14+2), o<1

est bien définie, et h(0) = 1 et

K(z) = by(z)(1+2)+ba(z) (~a) (L+z)"
= (1+2) (1 +2) by(z) — aba(z))
@

11 suit que (z) =1, cad. bo(x

(1+2)* pour tout o] < 1.

Exemple. Pour a = £ ona

() - $(DE-(2)

= (1! e

ot 1 1 1-3
VITE =g ime et gty 128 2
+z +ZI 2.41 2-4-61
Bien siir on peut aussi trouver cette série de Taylor de vIF 7 en calculant

; @@ o :
les coefficient de Taylor £ récursivement. Je vous laisse ce calcul comme
exercice.

11.4 Les critéres d’Abel et de Dirichlet

Le M-test de Weierstrass implique la convergence uniforme et absolue des
séries. Les deux critéres suivants s'appliquent souvent aux séries de la forme

> anka

0t an, fa: § — C sont des nombres ou des fonctions qui me convergent pas
absolument.
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Pour la preuve, on utilisera le “truc d’Abel” : soient (an), (/) deux suites
de nombres ou de fonctions. Posons

Alors, par “intégration partielle discréte”,

Safi = Afit (A= A) fot -t (An—Ani) fa
=

Ar(fi = fo) ++++ Anct (faor — fn) + An fa (2)

Critére de Dirichlet. Soient f,: S — R et ay: S — C des fonctions qui
satisfont les trois conditions suivantes :

(i) Pour tout z € S la suite (fu(x)) est monotone décroissante,

() [Ifalls =0 pourn — oo,

(i) {|D
=

<M < oo pour tout n € N.
s

Alors la série Yy an fu converge uniformément sur S.
=

En particulier, sous les hypothéses (i) et (ii), la série alternée y (=1)"f,

p=
converge uniformément sur S.

Preuve. (Critére de Cauchy et truc d’Abel) Le truc d’Abel (2) donne

# Wit
> acfi = Ac(fe— fisr) =D A (e — i) + Am fin — An foe
b =t =

Gréce (i) et (ii) nous avons fx — fe1 > 0 et fi > 0. On obtient alors

3 G

k=ni1

et
<MY (o= fus) + M (f+ ) = 2M .
=1
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Grice (i) il existe pour = > 0 wn N tel que [fls < 577 powr n > N.
Pour m >n > N on a alors

> ahif <«
[ty
L'affirmation suit du critére de Cauchy pour les séries. o

Exemple. La suite

i%, zeR

En effet, posons fi = & et ay(z) = e/**. Les hypothéses (i) et (ii) du Critére
de Dirichlet sont clairement satisfaites, et (iii) l'est également car

5o

pour tout z € [§,2r — 4] et pour tout n. Remarquons encore que la suite
diverge en z = 0. kS

1 1
sinz/2| = sind/2

Critére d’Abel. Soient f,: S — R et ay: § — C des fonctions qui satisfont
les trois conditions suivantes :

(i) Pour tout z € S la suite (fu(x)) est monotone décroissante,

(ii) [Ifalls <M < 0o pour toutn € N,

(iii) Y an converge uniformément sur S.
=
Alors la suite Y an fu converge uniformément sur S.
=

Preuve. (Critére de Cauchy et truc d’Abel) En vue de (ii
poser

nous pouvons

Ax) pour « € 5.
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L’addition d’Abel (2) fournit

S ah = 3 Al fen) + Amfn— Aua
i =
= (e A= i) + (A — A) f— (Au— 4) o )
=

Soit & > 0. D'aprés (iii) nous trouvons A tel que [|Ax — Alls < = pour tout
k> N.Soitm >n > N. Alors (3) et (i) et (ii) donment que pour tout z € S,

m mo1
> @) i(@)| < sz — Jri(@)) +2eM
[t} =
= e(fulz (z)) +2eM < 4eM.
Clest vrai pour tout z € S, d'od
> afi| <4eM Ym>n>N.
[
Laffirmation suit du critére de Cauchy pour les séries. o

Voici une conséquence du critére d’Abel. Soit donné une série entiére
3, ca™ de rayon de convergence R. Quest-ce qui se passe au bord de lin-
tervalle de convergence, cad. au points = = 77

Théoreme de la limite d’Abel
Supposons que la série entiére Y ¢,z converge en z = R > 0.
=
Alors elle converge uniformément sur [0, R, et li représente une fonction
continue (par le Théoréme 1). En particulicr,

Tim, (i(,’"z") = ic,.ﬁ",
= =

Preuve. (Critére d’Abel) Posons

Pour tout z € [0, R]
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(i) la suite (fo(x)) est monotone décroissante

(i) |fa(x)| <1 pour tout n

(iii) ) a, converge (uniformément, car les a,, sont constants)

=
Parle critére d’Abel la série Y anfu = Y  cna” converge donc uniformément

= =
sur [0, R] o
Exemples
a) Nous savons que

o Lt

arctan(z) = 2(71) T ll<i=R
=)

Pour z = 1 la série » converge (par le critére de Leibniz). Donc,

—n+1
par le critére d'Abel,

arctan(z) = Y (~1)" % ze(0.1]

et la convergence est uniforme sur [0,1]. Comme tan(§) = 1 nous trouvons

y
n+1

% = arctan1 = i

n=0

Nous avons prouvé la formule de Leibniz pour .

3 1.1
o= Rl
4 35

L
7

que des mathématiciens Indiens du 15%° sidcle connaissaient déja.

b) Nous savons que

In(1+z) = i(’mzﬂ“, o] <1=R.
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(G0

converge par le critére de Leibniz, d'oit
n+1

Pour z =1 la série )
=

it =3 EW e e

converge uniformément, et

2=

n=0

oy
Caleul des séries 35, € (0,2n

; > 9 €(0.2m)
La convergence des ces séries suivait du critére e Dirichlet. Pour leur caleul
nous utilisons lingénieuse méthode d’Abel.

Fixons ¢ € (0,27), et regardons la série entitre

©_gikp

k

=

F(z)

Elle converge pour = 1 d'oit par le Théoréme de la limite d’Abel,
F est continue sur [0, 1].

Sur [0,1) nous avons

Fl) ™03 ekt
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oit, dans la dernitre étape, nous avons multiplié le numérateur et le dénominateur
par 1 —ze~#¥. Sur [0,1) nous avons done

F(z) = [ F'(s)ds

cosp—s T sing
ds ds
ﬁ T—2scosp+ 5 H’A T—2scosp+s

ssing \ |7
+iarctan | ———
T—scosp) |y

—3Tog (1~ 25cos + )

o

1 5 zsing
= 210g(1 chosw+1)+zarctan(lircosv) .

Cette fonction et F' sont continues sur [0, 1], d’ott

nous finalement trouvons

- o e
g = Iog(251n2> +i

Nous concluons que pour tout ¢ € (0, 2m)

— _log (Zsing),

Remarques
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o
o 4 ot = donnez( D' g2

b 1.1 ¥
2,p0u1y7:% donnel—é«#gf;«#---:%r

© 2. donne

voir les exercices.

Entre-temps, nous avons trouvé plusieurs approximations de fonctions
FiR>R:
o Les polynémes de Taylor Tj.f pour les fonctions k fois dérivables :

E=0: f(0) la valeur au point
E=1: f(0)+ f(0)z la tangente, i.e., la droite
qui approxime f le mieux
k=2: f(0)+ f(0)z+ f"(0)z? la parabole
qui approxime f le mieux
etc.

Ceci sont des approximations de f proche de 0, qui sont précises au
point 0 jusqua l'ordre k.

o Si [ est analytique (cad. C* et donnée par sa série de Taylor) alors
f est uniformément approximée sur [—R +3, R —3] par les polynomes
Tif, k > 0, selon le Théoréme 6.

Une approximation uniforme par des polynémes existe, en fait, pour n'im-
porte quelle fonction contine!

Théoréme d’approximation de Weierstrass (1885)

Soit f: [a,b] — R une fonction continue. Alors pour tout £ > 0 il eziste un
polynéme P (qui dépend de f et de =) tel que

@)~ P@)l<e  Voell

cdd. [|f = Pllag = If = Pllo <&
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Vous allez voir la preuve dans les TPs.

Remarques. (1) Avec s, := £ nous trouvons donc une suite P, de polynémes

telle que

Tim (17 = Pall
Soit Pla, b] lensemble des polynémes, restreints & [a, b]. Alors
Pla,b] € Cla,b]

et par le théoreme, Pla,b] est dense dans Cla,b] par rapport & la norme
supremum | [lo,

(2) Ce théoréme est important pour les applications numériques, car un
ordinateur évalue trés facilement les polynomes, alors que c'est souvent com-
pliqué d’évaluer une fonction continue pour un ordinateur.
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Chapitre 12

L’intégrale de Riemann pour
les fonctions non-bornées sur
des intervalles non-bornés

Jusqua présent nous w'avons intéeré que des fonctions bornées sur des inter-
valles bornés et fermés,

filab] > [-C,C] CR
Nous allons maintenant prolonger intégrale de Riemann aux fonctions non-

bornées sur des intervalles arbitraires comme la limite d’une fonction.
Pour voir comment le faire, regardons d’abord quelques exemples.

Exemple 1. La fonction f(z) = e sur [0,00) appartient & R[0,c] pour

tout ¢ > 0.

L'intégrale sur [0, c] est
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La limite

lim F(c) = 1— lim e~

existe done, et nous pouvons alors définir

/e”dz lim [ e Fdr = 1.
o

Ce nombre est “I'aire” sous le graphe d’une fonction bornée sur un intervalle
non-horné.

Exemple 2. Considérons maintenant une fonction non-bornée sur un inter-
valle borné mais pas fermé :

f01-R, f(@)

Le danger est autour de z = 0. Prenons donc = > 0. Alors f € Rlz, 1] et

,/‘%dz:zﬁ

'
= 2(1—A).
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La limite lim F(¢) = 2 existe done et novs ponvons définir
BV

! |
/ﬁdl::[\xg/zﬁdzfl

Définition 1. Soit f: [a,00) — R telle que f € Ra,c] pour tout ¢ > a, et
soit

Fila,0) >R, F(0) /cj(z)dz, c>a.

Si la limite lim F(c) € R existe, on définit

/m J(@)de = lm F() € R

et on écrit alors [ € R[a,00).

On fait la définition analogue pour f: [a,b) — R telle que f € Rla,c| pour
tout ¢ € (a,b).

Exemples

1. Pour la fonction z > £ sur [1,00) nous avons
A
/ —dr =lc—In1 = lnc.
Lz
La limite

lim l411r: lim Inc = +o0
e fy T )
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wexiste done pas dans R, et I'intégrale

I
z

est divergente.

35
30
25
20
15
10
05
a)
L R T R R
1 11 N "
FIGURE 12.1 - Les graphes de ——, —, — (Qui est qui?)
TR 22
Sia+#1, alors
Donc

Décroissance en oo :

o sia<l

=
e i} .
1 ¥ — a1

=1

2. La fonction  + - sur (0, 1] a une singularité en 0, mais est R-intégrable
sur [g, 1] pour tout = > 0.

Pour a # 1 nous avons
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_ L sia<t,
lim F(e) =
o oo sia>1.

]
Pour a = 1 nous avons () = /

Hle

dz = —Ine+In1 et donc lim F(e) =
N0

Croissance en 0 :

o sia>1

/ E

o P

o % sia<1
a

Définition 2. Soit f: R — R avec f € Rla, b] pour tous a < b. On définit

i Ti
[mf n_{gum[[nﬂ[f

si les deux limites existent dans R.

Attention. On ne définit pas / f = lim f 1.
£ s

[ (2

b
=0,
i,

Avec la Définition 2, / xdr nest pas défini.

Avec cette définition on aurait, par exemple

dr=m

Exemple. /

o 1+22

Preuve. La fonction z s ‘—ﬁz sur R appartient & Rla, b] pour tous a < b, et

b1 1 b1
/,,1+17dJr - /:1+z7dr+/a 1+I2d1‘

o b
+arctanz,

arctanz,

o o
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10

08l

0}

04]

02]

00}

1
FIGURE 12.2 - Le graphe de 2

Donc
/m L o i (o) i (i)
Tra? et e
T
53 =i
=}

Pour décider si les limites des intégrales lim F(2) et Jim F(b) existent,
nous pouvons appliquer les critéres de convergence pour les fonctions :
Proposition 1. (Critére de Cauchy)

Soit f: [a,00) — R avec f € Rla,b] pour tout a < b. Alors

//canaeyye < Ve>0 3Jc>a tel que

v
/[|§z Vy>z>e

Preuve. Pour tout ¢ > a posons

Par le Critére de Cauchy appliqué a F,

lim F(o) existe <= V>0 3c>atelque [Fy) = F(z)| <= Vy>z>c
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Notons encore que F(y) — F(z) = [ f. o
Tlustration : / T converge < a>0

|

1

o5

o)

s

i

E S

FIGURE 12.3 - Une partie du graphe de %13

Preuve. Pour y > x nous trouvons, en intégrant par parties et en utilisant
|eos] <1,

pour tous y > > c. o
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Proposition 2. (Critére de monotonie)
Soit f: [a,00) = R avec f >0 et f € Rla,b] pour tout a < b. Alors

o o
/ f converge <> 3M<cxxtelque/f§M Vbh>a

Preuve. Comme [ > 0, la fonction F(b) := [ est monotone croissante.
Donc lim F(b) existe <= F'est boée. o
Définition. (Convergence absolue)

Soit f: [a,00) — R avec f € R]a,b] pour tout a < b. Alors

/ [ converge absolument <=

/ ”|f] converge, cad. |f| € Rla,00).

Proposition 3. Soit f: [a,00) = R avec f € Rla,b] pour tout a < b.
Si|f| € Rla,00), alors f € Rla,00) et

[ < [in
Preuve. (Critére de Cauchy) Soit & > 0. Comme |f| € R[a, 0o) il existe par
le Critére de Cauchy un ¢ > 0 tel que

,
[inse vuzeze

et donc, par le Théoréme 2 du 9,

[

Encore par le Critére de Cauchy, f € Ra, o0). De plus,

,
‘ff|§/\f| Ya<h

.
s/ Ml<e Vysaze
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< [

o
Attention : Le contraire n'est pas vrai en général :
J € Rla,00) = |f| € Rla, 00)
" sinz
Par exemple, Iintégrale | >~ converge, comme nous l'avons vu,
, =
alors que Dintégrale / ST _ o diverge.
i
Preuve. Pour tout n € N,
T i N % Jging] 2
- # | Sudnn (n+1)r ~ (n+1)m
dot ,
() | g mHy
/ s 3L Ry
= z ™ 7
gt
o

Proposition 4. (Critére des fonctions tests)
Soient f,g: [a,00) — R avec f,g € Rla,b] pour tout a < b.
Si|f(x)| < g(x) pour tout x € [a,00) et g € Rla, o0), alors f,|f| € Rla,o0)

/j/|s/:"m§/nmg.

Preuve. Propositions 2 et 3. o

Exemple. Soit [: [a,00) — R, ot a > 1, et telle qu'il existe C < oo et a > 1
satisfaisant :

(=) <

< ——— pour tout z > a.
z(lnz)

Alors |f]| € Rla, ).
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Preuve. Tl suffit de montrer que

1
[m‘“:

- (h:r)“ € Rla, 00). Ceci est le cas, puisque

((h B~ (In a)""’)

—a

(Ina)"~* < co.

Le lien suivant entre séries et intégrale est trés utile.

Proposition 6. (Critére d’intégration via et pour les séries)
Soit f: [1,00) — R monotone décroissante et f > 0. Alors

" f(k) converge = /m | converge.
=1 1

Preuve. (Critére de monotonie)

f(z)

1 i i+l

FICURE 12.4 - L’idée de la preuve

Comme [ est monotone décroissante, f € R[1,b] pour tout b > 1 selon la
Proposition 1 du Chapitre 9. On a

fG) = (@) > f(G+1) pour j<z<j+1
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d'ott
j+1 j+1 j4+1
10 = [Tz [ iwaz [0 - g6+,
Traddition st § dosine
-
2m>/ J(@)dz Z GFD =3 IG @

=

Comme une suite monotone converge si et seulement i elle est bornée, la
proposition suit en vertu du Critére de Monotonie. o

Notons quen cas de convergence, () montre les estimations

S0 < < [“raan < 210

De plus,

Zf < [C1@a <y o+ LY e

S10+ 10 < [Trwa <30 s <o

- 1
Exemple. La série Y - converge pour tout = > 0.
Zk(mk)

En fait, Vintégrale de comparaison vaut

R T "
A o= " = Z(m2F

comme

% i s
Amdtz—g(lnt)

ol

((m 2= —(In z)’g).
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1
La dewxitme désivie de I fonction 7 oo et positive, comme on vérife
n

facilement. Pour la valeur de cette série nous obtenons donc I'estimation

 § 1 1
oy = k;k(lnk)ws < Cmor T aMmy

Similairement on montre que la série diverge pour & = 0, voir les TP

1
— = .

klnk

M

>

= oo de CDI 1.

S

Clest une amélioration remarquable du résultat
=
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Fonctions continues f: R” — R

Nous avons déja vu ce quest une fonction continue C = R2 — R. Le cas de
fonctions R — R pour n > 2 est analogue.

13.1 Notions de topologie dans R"

-
Définition 1. Une norme sur R® est une application p: R* — R, > p(x)
avec les trois propriétés suivantes.

1. plx) > 0 (positi
2. p(Az) = Al p(z) YAER, z € R (homogénéité)
3. pz+y) < p(x) +p(y) Va,y € R® (inégalité triangulaire)

Rappelons que R* = {z = (z1,...,2,) | 7; € R, j

t6), et p(z) =0 < = 0 (non-dégénérescence)

Les propriétés 1, 2, 3 impliquent “Ia continuité” de la norme :

4. |p(z) = p(w)| < plz —v).
En effet,
s
pl) = plz—y+y) < plz—y)+pW).
32
) = ply—z+2) < plz—y)+p()
Dans le Chapitre 7.8 nous avons déja vu les normes , p > 1:
"

lzllp = (jzaf? + -+ + zal?)

273
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Pour p = 2, cest la norme Euclidienne

Vo4l

Pour cette norme, 3 est 'Inégalité de Minkowski dans R™

(Baew) "« (B4) "

llzll == llllz

et 4 devient |||z]| — [lyll| < [l — v]l. Rappelons aussi le résulat suivant du
Chapitre 7.8.
Proposition 1. Pour tout « = (1,...,24), Y = (U1,-- - ¥n) € R" on a les

deus inégalités
Cauchy-Schwarz (Hélder pour p = 2)

ool < (£4) (8)”

[z )| < llzll lvll-

clest-a-dire

Parmi les autres normes fp, les plus importantes sont :

La (;-norme 2], := 37, |2;], aka la norme de La Chaux-de-Fonds.

=

Ty
y

]

e

La norme supremum [7/|o, = max {|z1],. .., [al}.

Tl est utile de comparer les normes :

Proposition 2. [« < [zl < V7 |7l ¥z €R?
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Preuve. Etant donné ¢ = (z1,...,,), on a pour tout j

2 < (o4

< /n max 22
12550

™

comme nous I'avons affirmé. a

Y
A

Etant donné une norme, nous pouvons définir les notions “boule”, “ou-
vert”, “fermé”, “voisinage”, “convergence”, “continuité”, .. Iei, nous le faisons
que pour la norme || - | = || - [lo-

La boule ouverte de centre a € R" et de rayon r > 0 est 'ensemble

Bi(a) == {z €R*| [z —al| < 7}.

Définition 2. Une suite (z4)g21 de points dans R” est convergente s'il
existe a € R" tel que

Jim [z —al = 0.
Dans ce cas, a sappelle la limite de (z4), et on écrit lim 21 = a ou 2k - a.
Géométriquement, la convergence & — a signifie qu'étant donné n’importe
quel rayon £ > 0, il existe N(<) € N tel que 4 € B.(a) pour tout k > N().

Proposition 3. (Réduction a R) Soit (vi)s1 une suite dans RY, cest-d-dire

o = (ahad..., 7)) ER™, k>




rId790.jpg
276 13. Fonctions continues f: R" —» R

o

)

FIGURE 13.1 - On peut prendre N = 10 (mais pas N = 3)

et soity = (y',...,y") € R™. Alors
Jimze =y dansR"
si et seulement si

dansR ¥V1<j<n.

Autrement dit, la convergence dans (R™, |- [ est la convergence compo-
sante par composante.

Preuve. (Proposition 2) Pour tout k > 1 nous avons

max|o} =] < Jlox =yl < VA max|el -]

i<j<n i<j<n

Laffirmation suit de la définition de la convergence dans R et dans R". O

Définition 3. Un sous-ensemble A C R™ est borné si

AC By(0) pour un R < oo.

Proposition 4. (Bolzano Weierstrass) Chaque suite bornée dans R posséde
une sous-suite convergente.

Preuve. Nous faisons 'induction sur n.

Pour n = 1, cest le Théoréme de Bolzano-Weierstrass du CDI 1.

n~sn+1: On se donne la suite bornée

2= (2., 2l ) dans RPH.
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Alors la suite
= (ch,...,a}) dans R*

est bornée. Par Phypothése d'induction, cette suite possde une sous-suite
convergente

Notons ¥ sa limite,

lim zj, =y €R™.
Pl
Lassuite (z");21 dans R est bornée (car la suite (') est bornée) et done
posséde une sous-suite convergente (z:’“)‘z,. Notons y™*! sa limite,
lim 12’“ Y™ e R

La sous-suite ()1 de (2}, )21 converge vers la méme limite (en vue de la
Proposition 3),

e, =

Encore la Propostion 3 implique done que pour y == (¢/,5™") € R**! nous
avons

ERM,

lim 2, =

La Proposition 4 est démontrée. o

Définition 4. Une suite () dans R" est de Cauchy si pour chaque = > 0
il existe N(2) € N tel que

llox —zell < & VE,€> N(e).
Proposition 5. R" est complet, c'est-a-dire chaque suite de Cauchy converge.

Preuve. (Complétude de R) Soit (z;);; une suite dans R?,

12 n
(@hithieanszg)s JE L
Selon la Proposition 2,
kK k_ gk
Irglgl\zﬁzﬂ < lzs—mll <V et |7y~
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doit (z)51 est de Cauchy dans R si et seulement si (%), est de Cauchy
dans R pour tout 1 < k < n.

Selon le Théoréme IL.3 les n suites (2§);>1 convergent dans R. Grice & la
Propositon 3, nous concluons que la suite (z;);51 converge dans R”. 00

Définition 5. Un sous-ensemble U C R* est ouvert si pour tout z € U il
existe un & > 0 tel que B.(x) C U.

Exemple. Une boule ouverte Br(a) C R® est ouverte.
La preuve est un joli exercice.

Définition 6. Soit A C R". L’adhérence de A est 'ensemble
a

{z €R" | il existe une suite (z;);21 dans A telle que z = lim z,}.

f==

Notons que A C A (prendre la suite constante z; = z).

Définition 7. A C R™ est fermé si A = A.

Proposition 6. A C R* est fermé si et seulement si le complément A® =
R\ A est ouvert.

La preuve est un exercice pas trop fascinant.

Définition 8. A C R" est compact si chaque suite (zx) C A posséde une
sous-suite qui converge dans A.

Théoreme 1. (Bolzano Weierstrass) A est compact si et seulement si A est
fermé et borné.

Preuve. “="
“4e=" : Proposition 4. o

Donnez Pargument vous-méme! Aide : Preuve par l'absurde.
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13.2 Fonctions continues

Nous venons finalement & la continuité des fonctions f: R* > D — R. Ici,
D C R" est le domaine de f.

Définition 9. La fonction f: D — R est continue en zo € D si pour tout
&> 0 il existe § > 0 tel que

|f(@) = flzo) <& Va €D avec [z — o] < 6.
La fonction f est continue sur D si [ est continue en tout point de 1.

Théoreme 2. (Continuité via suites)
Soit f: D — R une fonction, et xo € D. Sont équivalents :

(i) f est continue en zo.

(ii) Pour toute suite () C D qui converge vers z, dans R", la suite
f(ax) converge vers f(z0) dans R. Bref :

Jim ok =20 = Jim f(ox) = f(,}im I,;) = f(z0).
La preuve est exactement comme pour = 1 (Chapitre 5.1, Théoréme 1).

Régles de calcul : Exactement comme pour n = 1 : Copier le Chapitre 5.2.

Exemple. Regardons la fonction f: R? — R,

Alors f est continue sur R,
Preuve. Pour  # 0 Paffirmation découle des régles de calcul.

Regardons z = 0. Commencons par Vestimation

_ milzl
3+ 13

< faa| < |zl ()
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Soit = > 0 donné. En vue de (+) nous prenons 6 = . Alors pour « € R? avec
lz =0l = |zl <4,

(@)= FO)] < |lz]l < e
Ca marche pour tout « > 0, it f est continue en 0. o
Question : Est-ce qu'on peut réduire la continuité R" — R & la continuité
R — R? Plus précisément, soit /: R" — R une fonction telle que Ia restric-

tion de f & chaque droite (= R) dans R" est continue. Est-ce qu'il suit que
1 est continue?

Réponse : Non, en général
Pour des exemples, voir les Exercices.

Proposition 7. Si K C R est compact et f: K — R est continue, alors
J(K) CR est compact.

Preuve. Exactement comme la preuve de la Proposition 1 du Chapitre 5.5. 0

Théoréme 3. Soit K C R compact et f: K — R continue. Alors [ atteint
son magimum et son minimum : Il existent 71,75 € K tels que

S(@1) < f(2) < f(zs) pour tout = € K.

La preuve est comme celle du Théoréme 4 du Chapitre 5.5.
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Fonctions différentiables
fR*" >R

Rappellons qu'une fonction f: R — R est différentiable en a si la limite
existe

et que cette propriété peut étre reformulée de deux manitres équivalentes :

1l existe une application linéaire L: R — R (c'est-a-dire un nombre réel L)
telle que

i J@tB)— f(@) — Lh

[ Tl =0 )

1l existe une application linéaire L: R — R telle que

fla+h)—f(a) = Lh+r(h) on lm -2 —0. (+%)

Dans (x) et (#), la fonction f est donc linéairement approximée en a par
une fonction linéaire de pente L, et f'(a) := L est la dérivée de f en a.

Les formulations (+) et (++) de la dérivabilité peuvent étre généralisés dans R™.

281




rId808.jpg
282 14. Fonctions différentiables f: R" — R

14.1 Définition de la différentiabilité

Définition. Une fonction /' U — Risur un ouvert U C R" est différentiable
ena €U s'il existe une application linéaire L: R" — R telle que

fla+h)—f(a)—Lh

Tim =0. (*n)
% ]
Ici, || - || est la norme Euclidienne sur R”, mais nous remarquons qu'on

peut prendre n'importe quelle norme, comme toutes les normes sur R* sont
équivalentes.

Remarque. On ne peut pas généraliser la formulation
fla+h)—f(a)
h

lim

Jim existe (0)

de la dérivabilité dans R & R pour n > 2, car dans ce cas, diviser par le
vecteur h € R* n'a pas e sens. Remplacer (o) par

fla+h) - J(a)

lim existe
h=0 [

ne marche pas non plus. Par exemple, déja pour f: R — R, f(z) = & et
a =0 (situation oit on aimerait que la dérivée est 1) on a

flat+h) —f(@) _ R

lim —————~ = — = 1

o [ (IRl
pendant que

- fla+h)— [ h

ALl il AL SR I

o Q] [

Tl est facile de voir que (x) est équivalent & :

1l existe une application linéaire L: R" — R telle que

fla+h)—fla) = Lh+r(h) on m% —o. (+%n)

Lemme. (,) et (+a) sont satisfaites par au plus une application linéaire L..
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Preuve. Si Ly et Ly satisfont (+,), alors pour tout h € R* avec |[h]|
nous avons par la linéarité de Ly — Ly,

o (L Lo)(th) e
(I~ L)) = Jim =i (2

0,
dott Ly — Ly = 0. o

Si elle existe, cette application linéaire I, s'appelle la différentielle de f
en a, et s'éerit df(a).

Voici une illustration de (+#,) pour n = 1.

a a+h

Soit €., en les vectenrs de la base usuelle de R™. Comme df(a) est

linéaire, on a pour tout vecteur h = (hi,. .., hn) € R®
df(a)h = Y (df(@)er) - b 3)
=i

La matrice 1 x n

F(a) == (df(@)ers...,df(a)en).

appelle la dérivée de f en a. Nous trouvons donc

@(@h = f(a)h. ®)
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A gauche, une matrice est appliquée & un vecteur

Pour interpréter la dérivée de manitre plus géométrique, regardons la
fonction affine

x> Tf(z;0) := f(a) + ['(a) (z —a), ()
appellée 'approximation linéaire de f en a. Son graphe
{@,2ns1) €R™! | 204y = TS(z;0)} (6)

est le plan tangent au graphe de f au point (a, f(a)).

-

n=1 plan tangent

graphe f

a a+h

£

Proposition. Si [ est différentiable en a, alors [ est continue en a.

Preuve. Nous savons que f(a +h) — f(a) = L h+r(h). Comme Lh — 0 et
(k) = 0 i h— 0, nous trouvons que f(a+h) — f(a) si h — 0. o
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Exemples

1. Soit f(z) = Az +b, olt A est une 1 x n matrice et b € R. Alors f est
différentiable en tout point a € R?, et

df(a)h = Ah YheR®

Cest-a-dire f'(a) = A pour tout a. En particulier, la dérivée d’une applica-
tion linéaire est I'application elle-méme. Ce n'est pas une surprise, car par
définiton, la dérivée est la meilleure approximation linéaire.

Preuve. Comme
fla+h)— f(a) = (A(a+h)+b) —(Aa+b) = Ah,

nous pouvons prendre L = A et (k) = 0 dans (+,). o

2. Soit A = (a;;) une n x n matrice symmétrique. Alors a fonction

FR SR, f(z) = (Az,7)

est différentiable en tout point a € RY, et
df(a)h = 2(Ah,a) = 2" A,

Cest-a-dire f'(a) = 2aTA.

Preuve. Exercice. o

14.2 Représentation de la différentielle par
les dérivées directionelles

Rappellons que pour les fonctions R* — R, la continuité ne peut pas étre
réduite 4 la continuité de la restriction & des droites. Par contre, ceci marche
pour les fonctions différentiables R" — R. En fait, nous allons voir que la
différentielle est déterminée par les n dérivées de / dans les directions des
axes, appellées les dérivées partielles. Les dérivées partielles vont aussi nous
fournir une interprétation plus géométrique de la différentielle.
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Soit f une fonction différentiable en a. Nous voulons écrire les valeures
df(a)h pour h € R" en terme des dérivées partielles de /. Fixons h € R™.
Pour tout £ € R avec |t| petit, nous savons que

h)
fla+th) = f(a) +df(a)th+r(th) on }Eno% (b}
et done
df(a)h = {lﬂw (7)

Défnition. Soit f: U — R une fonction définie sur un voisinage U de a.
Fixons h € R\ {0}. Si la limite

o L@ D) — T (@)

=) t

nf(a

existe dans R, alors elle s'appelle la dérivée de f en a dans la direction h, ou
Ia dérivée directionnelle de f au point a dans la direction h.

I

Ty

Ty

Regardons maintenant le cas spécial ot h = ex pour un k = 1,...,n.
Les dérivées directionnelles de f en a dans les directions ex s'appellent les
dérivées partielles de f en a. La fonction f est partiellement dérivable
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en asi toutes les dérivées partielles 3, f(a), ..., d,, f(a) existent. Autres no-
tations pour d,, f(a) sont

£

Proposition 1. Si [ est différentiable en a, alors toutes les dérivées directio-
nelles en a existent. En particulier, [ est partiellement dérivable en a. Pour
h=(hy,...,hy) € R" la différentielle vaut

df(a)h = ['(a)h = Onf(a) = z":akf(“)'hk ®)
=

et la dérivée f'(a) est la matrice 1 x n

f(a) = (8:/().... 0 (a) )

Preuve. Lexistence des dérivées directionelles était montrée en haut (voir (7).
Selon (7), df(a) ex = df(a), d'oit (8) est équivalent & (3),(3"), et (4%) est
équivalent & (4). o

Calcul des dérivées partielles
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La définition A —
" a+teg) — f(a
%uf@) =l =—————
avec a = (aj,...,a,) montre que pour calculer 9 f(a) il faut fixer dans
J(@1,...,,) les variables z; = a; sauf 2y, et puis dériver la fonction d'une
seule variable
Tk > f(@r, .- Ak 1, Tk, Qpys -+ 0n)

au point ax.

£

FIGURE 14.1 - Le graphe de z + f(z,a2)

Exemple. Regardons la fonction f(z,y) = sin(2z) e%. Alors

0,f(a.b) = % (sin(2z) €¥) = 2cos(2a) e®
3,f(a,b) = .1% (sin(2a) ) = 3sin(2a) e®
s

14.3 Critere principale pour la différentiabilité

Voici une recette pour décider si f est différentiable en a : On décide d’abord
si f est partiellement dérivable en a. (D'aprés la Proposition 1, c'est une
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condition nécessaire pour la différentiabilité.) Si oui, d’aprés (8) le seul can-
didat pour la différentielle df(a) est application linéaire

LR R, Lh=Y 0f(a)hs
=1

11 faut donc vérfier si ce candidat vérifie (+,).

Question : Est-ce ceci est toujours vrai ? Clest-a-dire, est-ce que “partielle-
ment dérivable” implique “différentiable” 7

Réponse : Non, en général! Nous allons donner plusieurs exemples dans R?
qui montrent que I'existence des dérivées partielles d: f, 3, f ne suffit pas pour
la différentiabilité.

Exemple 1. (Elaborer les détails est un Exercice)

Pour Ia fonction f: R? — R,

2zy

SO0 =0, J@n) =

s (2,9) #(0,0),

o df(0) wexiste pas, car [ nest méme pas continue en (0,0).
© 3,/(0,0) =0 et 3,/(0,0) = 0 existent
(mais 9 /(0,0) wexiste pas pour les autres directions k).

Remarquons que dans cet exemple, d:f(z,y) et d,f(z,y) ne sont pas conti-
nues en (0,0).

Le prochain exemple montre que méme Iexistence de toutes les dérivées
directionelles 9 f(z, y) ne suffit pas.
Exemple 2. Pour la fonction f: R? - R,

£(0,0):=0, f(z,y) = si (z,y) # (0,0),

s I
22+ 9
(0)  est continue en (0,0).

(1) df(0,0) nexiste pas.

(2) 3,f(0,0) existe pour tout h € R
(3) 3:f(z.y) et 3,f(z,y) ne sont pas continues en (0,0).
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Preuve. (0) était déja vérifié dans le Chaptire 12.

(On note que |f(z,y) — £(0,0)| = | f(z,9)| < |y])-

(2) Notons que f(tz, ty) =  f(«,y) pour tout ¢ € R, est-a-dire f est linéaire
sur les droites passant par lorigine (0,0). Donc 8,.f(0,0) = f(h) existe pour
tout h € R2. On pent aussi obtenir ceci de maniére plus formelle :

s (0,0) = iy 0B ZIO0) _

En prenant h = e, et h = e, nous obtenons en particulier que
9:£(0,0) = f(1,0) =0,  8,f(0,0) = f(0,1) =0. (0

(1) Si f est différentiable en (0,0), la formule (8) et (0) montrent que L, = 0.
Cependant, avee L = 0, (+n) n'est pas satisfait : Pour h = (hu, h1) # 0,
SO = fO =L _ fh) B 1
] TR~ mam A

ot la limite limy o du quotient & gauche ne peut pas étre 0.

(3) Un court caleul montre que pour (z,y) # (0,0),

oyt

%S (@.9) = 205

Le long de la diagonale {(z,y) | = = y} nous trouvons donc

FR DS - P
2f(@,2) = 2G0m = 5 sic=y#0.
Cependant, 9, f(0,0) = 0 par (0). Il suit que la fonction (z,y) + 9,f(z,y)
west done pas continue en (0,0).
De maniére similaire, nous caleulons
2P
@ o

S (z,y)

Le long de Paxe {y = 0} nous trouvons

.
Byf(2,0) = % =1#0
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Comme d,f(0,0) = 0 par (0), la fonction (z,y) + 3, f(z,y) n'est pas conti-
nue en (0,0). o

En fait, Pexistence de toutes les dérivées directionelles d f nimplique
méme pas que f est continue :

Exemple 3. Pour la fonction f: R? — R,

2

T S @) £0.0),

e [ n’est pas continue en (0,0), a fortiori df (0, 0) n'existe pas.
® 9,f(0,0) existe pour tout h € R2.

1(0,0):=0, J(z,y) =

La preuve est laissée au lecteur intéressé. Pour une telle analyse, un dessin
du graphe est utile. Mathematica le fait tout de suite, et on peut tourner le
graphe avec la souris.

flx_, y1 = (xy™2) / x"2 + y4)
Plot3D[ flx, yl, {x, -1, 1}, {y, -1, 11

Nous remarquons que dans cet exemple aussi, d,/ et , ne sont pas conti-
nues en (0, 0). Nous montrons maintenant qu'une fonction avec des dérivées
partielles continues est différentiable.

Critére pour la différentiabilité : Supposons que dans un voisinage U de
a € R toutes les dérivées partielles 9, /,...,0,[ existent et sont continues
en a. Alors [ est différentiable.

Preuve. (TVM) Nous montrons que la forme linéaire L: R* — R définie par

Lh:=Y" 0cf(a) hi
=

satifait la condition (#n).

La preuve est trés géométrique. Essayez de vous en convaincre. Soit Q) € U
un cube ouvert paralléle aux axes qui contient a. Tout point a + h € Q
peut étre connecté avec a par un chemin polygonal paralléle aux axes par
morceaux dans Q. En effet, poser ap = a et ax := ax_ + hxex, k= 1,....n;
en particulier a,, = a + h.
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Nous avons donc

flath) = (@) = 3 (o) — flax)-

=t

Nous transformons les différences dans cette somme au moyen du Théoréme
de I Valeur Moyenne : Regardons les fonctions @x: [0, ke — R,

@k(t) == f(ar_1 + tex).

Alors
J(@) = f(ar-1) = pilhe) = i(0).
Les fonctions @ sont dérivables, car f est partiellement dérivable, et p(t) =
[ (ax_, + tey). Daprés le Théoréme de la Valeur Moyenne ils existent des
nombres 7, € [0, ] tels que
or(he) = or(0) = he ph(e).

Avec & := ag_; + Trex nous avons donc
Slak) = f(ar—1) = T DS (&)-

Nous concluons que

flath)— fa)— Lh = 3"(3f (&) — 06 S (@) hi

=

et donc

(@t h) — 1(@) — LA < llhloo 3|0k S (&) — S (@)]-

=t
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Pour h = 0 on a & — a pour tout k= 1,.....,n. En vue de la continuité des
dérivées partielles en a nous trouvons donc
h)— Lh
i L0 1) = f(a)
B0 [

=

o

Remarque. L'hypothése de la continuité des df dans le Critére pour la
différentiabilité est suffisante, mais pas nécessaire, Par exemple, la fonction
FRSR,

£(0,0) =

1
(40 s ;
. f(@y) = (=" +y7) sin (zz+y2) si (z,9) # (0,0),
est différentiable sur R?, mais 8,/ et 8,/ ne sont pas continues en (0,0).

Exemple : Différentiation de fonctions invariantes par rotations

Soit F': I — R une fonction continiment dérivable sur un interval ouvert
1€ (0,00). Sur “Ianneau” ouvert

A(l) = {z R |[z]l =y/Y ate 1}

nous regardons la fonction

J(@) = F(ll=)- ©)
Pour k =1,...,n et  # 0 nous calculons en utilisant le chain rule
= d i R
xS () = F"(I\ZIU»(?—“(zH llzll) = F(ll=l) Tl

11 suit que les dérivées partielles de / existent et sont continues. D'aprés
le Critére pour la différentiabilité, f est donc différentiable sur A(), avec

dérivée .
_ Fli=l) v

T =

Définition. La fonction f: U — R est continiment différentiable si

toutes les dérivées partielles 3 f,. .., 3, f existent et sont continues.

@)

On dénote par
C'U,R) = {f: U =R f est continiiment différentiable}

Tensemble de telles fonctions. Selon le Critére pour la différentiabilité, les
fonctions continiiment différentiables sont différentiables.
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Ty

FIGURE 14.2 - L’anneau A(I) pour n = 2.

14.4 Le gradient

Soit (-} le produit scalair usuel sur R, c'est-a-dire

&n =Y &m.
f=

Etant donné une application linéaire L: R* — R, il existe un unique vecteur
V e R" tel que
Lh = (V,h) VheR",

en fait, les composantes de ce vecteur sont V = (V) = Le;

Si L est la différentielle df(a) d’une fonction différentiable f: U — R, on
appelle ce vecteur le gradient de f en a, et on écrit grad f(a). Ce vecteur
est donc déterminé par

df(a)h = dnf(a) = (grad f(a),h)| VheR™ (10)

D'aprés (8) on a donc

0,/(a)
mdf@) = | ¢ | =V

0./(a)
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Le symbol V s'appelle ‘nabla’, le mot Phénicien pour ‘harpe’.

Exemple. Soit f: [ » R,

J@) = Fllel)
avec I € C'(I, R) comme au dessus. Selon (9')
v = Fllal) o
T =T,
d’ont ,
oy = Fllale)

FIGURE 14.3 - Dans ce cas, F*([lal]) < 0 et '([jal]) > 0
Notons que grad f(a) est orthogonal au niveau {z € R" | f(z) = f(a)}. Nous
verrons plus tard que cest toujours le cas!

Regardons maintenant les dérivées directionelles 5 /(a) pour les vecteurs
unité, ||| = 1. D'aprés (10) et Cauchy-Schwarz,

9nf(a) = (grad f(a).h) < || grad f(a)l| IAll,

grad [(a)
[l grad f(a)[|

et si grad f(a) # 0 on a égalité si et seulement si h =

Nous avons prouvé le résultat suivant.

Lemme (Signification géométrique du gradient, 1)




rId850.jpg
296 14. Fonctions différentiables f: R" — R

(i) La longueur | grad f(a)|| est la plus grande dérivée directionelle 3, f (a)
parmi les vecteurs unité :

llgrad f(a)|| = max {9nf(a) | [|h]| =1} = M.
(i) Si M # 0, il eiste un unique vecteur unité v avec d,f(a) = M, et
pour ce v on a grad f(a) = Mv.

En mots : grad f(a) pointe dans la direction de la plus grande croissance de J
au point a et || grad f(a)|| est la dérivée de f dans cette direction.

14.5 Regles de calcul

Régles algébriques : Si f,g: U — R sont différentiables en a, alors f + g
et fg sont également différentiables en a, et

d(f+9)(a) = df(a)+dg(a),
d(fg)(a) = g(a)df(a)+ f(a)dg(a).
Si en plus f(a) # 0, alors 1/f est également différentiables en a, et

(F)e--75

Pour les dérivées on a donc les mémes régles quau casn =1 :

(f+9(0) = [(@+

(f9)'(a) = [(a)g ) ()g’(a),
I
(

@
" a)
Nig = -L9 & ka0,
()@ - 55 sz
Preuve:; G bl sont prowvdes: comme: pour =1 Véins Tamgle:du

quotient, c’est-a-dire la forme linéaire —df (a)/ f*(a) satifait la condition (+x) :
Pour des vecteurs h € R® suffisament petits nous avons f(a + k) # 0, et

1 1 1 d(ah)
W(ﬂaw’w* (a))’
-1 ([(a+h fla) — d[(a)h+f(n)—[(a+h)_df(a)h)
T r@+m) Al T(a) Tl
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Les deux termes de la somme de droite tendent vers 0 si h — 0 : Le premier
en vue de la différentiabilité de f en a, le deuxitme parce que f(a+h) — f(a)
si h — 0 et parce que

df(a)h
Q]

_ [(V/(a). k)|
T IV(@)ll-

Rappellons qu’une fonction différentiable f: U — R définie sur un ouvert
U C R* est continiiment différentiable sur U si toutes ses dérivés par-
tielles sont continues, et que Despace vectoriel des fonctions continiiment
différentiables sur U est noté C'(U,R). Les régles algébriques au dessus
montrent :

Si f et g sont continiiment différentiables sur U, alors [ +g et fg le sont
également; et [/g est continiment différentiable sur {z € U | g(z) # 0}.

Nous arrivons maintenant & une autre régle de calcul. Il s'agit d'une
premiére version du chain rule. En généralisant la dérivée directionnelle, nous
caleulons la dérivée d’une fonction le long d’un chemin : Considérons la si-
tuation

15U LR

olt I C R est un interval et U C R™ est ouvert.

Chain rule (premiére version). Soit ¥ = (71,...,7) : [ — U un chemin
diffbrontiable 6 to € I, et 30t 1+ U » R diiroatinble en a — A(to)-

‘ ’

Alors f oy est dérivable en &g, et

L om(t) = @) i) = Fl@)itto) = zaJ )it
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D'aprés (10), cette formule s'écrit également

£ omlt) = {rad S(0) (o).

Preuve. Selon I'hypothése, pour k € R et h € R suffisament petit,

Ao+ K) = 1(to) + 3k + Rk avee Fmri(k) =0,
fa+h) = J(a) + df(@h+ 2Bkl avee Jimra(h) = 0.

En posant h := y(to + k) — (to) nous obtenons
F(rlto+) = £ ((t0)) +3f (+(to)) (to)k + R(K). ()
ol
R(E) = df(@)ry(R)|| + > (1(to + k) = (1)) - [[§(t)k + 1 (R) K] |-
R(k)

Clairement, Lin% = 0. Laffirmation découle donc de (). o

Exemple. Soit / une fonction différentiable sur R2, Considérons sa compo-
sition F:= f o P, avec “Papplication coordonnées polaires” :

F(r,¢) = f(reosp,rsing).
rcos
rsing
similairement pour r fixé. Le chain rule montre donc que

Pour ¢ fixé nous avons un chemin r ( ) L f(reosp,rsing), et

=

=

£
|

= fe(rcosp,rsing) cos g+ f, (rcosp,rsinp) sin g,
Fy(r,9) = fa(reosg,rsing) (—rsing) + fy (r cos,rsing) (rcos ).

Application : Le gradient est orthogonal aux niveaux

Soit R* 5 U L5 R une fonction différentiable. Pour ¢ € R nous regardons
le c-niveau de f,

N,

{eelU| flz)=c}.
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i y
4 )
Py
z
F 5
i
R
&S 4500
4500
4400

Exemple. Si U est une carte géographique et f est laltitude au dessus de
Ia mer, alors N est la courbe de niveau c.

Soit maintenant v: I — U/ une courbe différentiable telle que y(I) C N,
pour un . Alors

0= 2(709) = (masow) i) vier

clest-a-dire

rad /() L3()] Viel.

En mots : Le gradient est partout orthogonal aux niveaux.
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A

2N

4600

4400

En résumé :
grad f(z) montre la direction de la plus grande raideur en z,
| grad f(z)|| est la raideur de Iendroit z,

— grad f(z) montre la direction qu'on prend si on tombe.

14.6 TVM et Théoreme de la borne

Le but de ce chapitre est de décrire ou d’estimer Paccroissement f(b) — f(a)
d’une fonction différentiable f: R" D U — R en terme de la différentielle df.
Notre stratégie est de ramener ce probleme au cas n = 1 & I'aide d’un chemin
deaab.

Théoreme de la Valeur Moyenne. Soit f: U — R différentiable, et soient
a,b € U deus points tels que le segment [a,b] := {a+t(b—a) |0 <t <1} de
adb est dans U.

Alors il eziste un point & € [a,b] tel que

I(b) = f(a) = df(€)(b—a) = F(§)(b~a)
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Preuve. Posons

A(t) = a+tb—a), telo,1],
et regardons la fonction F := f oy: [0,1] — R. Alors

S(®) = f(a) = F(1) = F(0).
Selon le chain rule, F" est différentiable, et
F(t) = df(v()) 7(t) = df (4(t)) (b —a) ¥te[0.1].
Selon le TVM pour n = 1, il existe 7 € [0, 1] tel que
F(1) = F(0) = F'(r) = df(y(7) (b—a).

Poser & :=4(

Souvent, il n'est pas nécessaire de connaitre I'accroissement f(y) — /()
exactement, mais il suffit de borner cet accroissement en terme de la distance
entre z et y :

Théoreme de la borne. Une fonction f € C'(U,R) est Lipschitzienne sur
tout ensemble compact convexe K C U.

Plus précisément : Avec
I1/lx = lg:éa'gc(lax/(i)\+---+\3n/'(§)l} = max{IV/(©)ll:}

ona

1) = 1@ < 1Nk lly = 2lloo-
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Preuve. Nous regardons de nouveau le chemin droit y(t) = = + ¢ (y — z),
qui est dans K comme K est convexe, et la fonction F := foy: [0,1] — R.
Alors

S) = J(z) = F(1) - F(0).

Selon le Théoréme de la borne pour = 1 (la Proposition 5 du Chapitre 7),
1F(1) = FO)| < guax [F(O).
En utilisant le chain rule, nous calculons

Py = df( (O)RI0)

= Z&f 1) % (t)
= Z&f(v(i))(yrrx)

d'o
POl < Y10 GO) s — =l
=
< Ik Ny = =lloo-
Tout ensemble, |(y) — f(2)| < [|/'llx Iy — zlce- o

Le TVM et le Théoréme de la borne supposent que [a,b] C U. Le résultat
suivant ne fait pas cette hypthése.

Proposition. Soit [ € C'(U,R) et soit7: [a, ] — U un chemin de classe C*
dea:=(a) dbi=(B).
Alors

() — / df(v(1) ¥(t) dt = / (VI(¥(1)),4(t)) dt.
Preuve. Pour F:= foyona

ro = a0




rId871.jpg
14.7. Dérivées supérieures et le Théoréme de Schwarz 303

et donc, grace au Théoréme fondamental,

J) = f(a) = F(B) -

B 8
[ rwa = [ aomioa
o

Interprétation en physique. D'un point vue physique, la proposition est
évidente : Soit f le potentiel d'une force V f. Dans ce cas, la formule

B
10- 1@ = [ (V160).50)a

dit que la différence du potentiel est le travail exercé le long du chemin
(rappeler que travail = force - vitesse). Par exemple, si vous faites une prome-
nade de Neuchatel & Chaumont, le changement de votre énergie potentielle f
est le travail exercé le long votre promenade “contre” le champ gravitationel
(attention aux signes).

14.7 Dérivées supérieures et le Théoreme de
Schwarz
Soit /: R" O U — R une fonction. Si les dérivées partielles 9,....., 0,/

. e out égalment; des fonctions [] — B, et on peirt regarder Jents
partielles

S = 9p(Okf) (si elles existent).
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Par exemple, pour n =2 on a

f
af, dof
Ouf, Onf, Oraf, dnf
Ok, Oanf, Ounf, e f, Ouaf, Onaf, Ornf, Oenf

ete. Pour les dérivées d'ordre k on a 2* expressions.
Pour des polynémes & plusieurs variables, il est clair que Iordre de différentiation
ne joue pas de rle. Est-ce que Cest vrai en général? Non! :

Exemple. (Exercice) Pour la fonction f: R? — R,

s S = 2E = G £ 0.0)

22442

7(0,0) ==

ona

9,0:1(0,0) = =1 # 1 = 3,8,1(0,0).

Remarque. 3,3, et 3, ne sont pas continues en (0,0).
Si, de plus, les deuxiemes dérivées partielles sont continues, tout va bien :

Théoréme de Schwarz. Si dans un voisinage U de a € R* les dérivées
partielles 3;f, 9;f et 3;;f evistent, et si d;;f est continue en a, alors 3;;f(a)
eziste également, et

% f(a) = 95if(a)-
Preuve. (TVM) Nous pouvons supposer que n = 2. Nous supposons donc
que 8, 3af et &0 f existent et que 9,3, f est continue en a = (z,y), et
nous allons montrer que 9,3, f existe également et que 919, f(a) = %01 f(a).

Etape 1. Comme 8, f et 8,3,/ existent dans un voisinage de (z,y), nous
pouvons appliquer deux fois le TVM pour les fonctions d’une seule variable :
Pour h et k suffisament petit, il existent 1,92 € (0,1) tels que

A= (fe+hy+k) = f@+hy) = ([ +k) = [(@.9)
= (@+hy+k)—J(y+k) - (@ +hy) - f(z.)
= (@f(z+0ihy+k) =3 f(z+Dhy)h
= 83, f(z+D1h,y+Vak) kh.
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Etape 2. Posons A := 3,3, f(z,y) et fixons £ > 0. Comme 8,3, f est continue

n (z,y), il existe § > 0 tel que
10201 f(z + R,y +K)— A < &

si |W], [K| < 6. Pour h, k avee |hl, |k| < & et hk # 0, la premitre étape montre
donc que

A
‘E—A| <e ®
Rappelons que
A l (f(z+h.y+k)—f(z+h,y) 7j(z,y+k)—f(z,y))
hk ~ h k k .

Fixons done h # 0 dans (x) et prenons la limite k — 0. Comme s f existe,
nous obtenons ;

%f(x+hy) = 3f(z,y)
h

5i 0 # |h| < 8. Cest vrai pour tout & > 0, cad 8,3, f(z,y) existe et vaut
A= 00,f(z,y)- o

Exemple. Regardons la fonction f(z,y) = &% sur R2. Alors
0f(@y) = e, Byf(r.y) = e
doit

3y0:f(z,y) = e™ +yre™ = ™ +axye™ = 9,9,[(z,y).

Pour une fonction f € C2(R,R) le Théoréme de Schwarz montre qu’on
wa que 3 dérivées d'ordre deux :

!
af, &f
anf, Onaf, dnf

et si f € C3(R2,R) on a que 4 dérivées d’ordre trois :

A f, Ouaf, Onf, dmf.
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Si f € CH(R2R), parmi les 2% expressions &, s, f de dérivées partielles
dordre k que k+ 1 sont différentes.

Définition. Soit U C R" un ensemble ouvert. Une fonction f: U — R
est k fois continiiment dérivable, ou de classe C¥, si toutes les dérivées
partielles 3, -+, f d'ordre k existent sur U et sont continues. L'espace
vectoriel sur R des fonctions de classe C* sur U est dénoté par C¥(U, R).

Le Théoréme de Schwarz montre que pour f € CK(U,R), Vordre des
dérivées partielles dans 3, - &;, f ne joue pas de role.

Finalement, on définit I'espace des fonctions U — R infiniment dérivables

C®(U,R) = ﬂc’*um

=
14.8 La Hessienne, la formule de Taylor

Rappellons que pour une fonction f € C'(U,R) et a € U,

Jlath) = +Zaf Vhy+r(h) oh l‘i‘é%:

Pour n = 2, prés du point (a, f(a)) la surface S = graphe f C R? ressemble
donc & o||h]]) prés au plan tangent
he ]R2}

{(a+h I@ +Za/(a>h)
au point (a, f(a)).

Voici une amélioration de ce résultat pour les fonctions de classe C2. Elle
généralise la formule de Taylor d’ordre 2 pour les fonctions R — R.

Formule de Taylor d’ordre 2. Soit [ € C*(U,R). Poura €U eth e R"
avec [a,a+h] CU ona

Ja+h) = 1@+ Y0 @)k 42 3 0T (@) hyhi+r(h)

pr=1
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< (k)

oit

8 ke =

Prés de a, la fonction f est donc approximée par un polynéme de degré 2.
Les graphes de f et de ce polynéme ont les mémes plans tangents en (a, f(a))
et, de plus, les mémes courbures en (a, f(a)). (Ceci est expliqué et prouvé an
cours Géométrie Différentielle.)

Preuve. (Formule de Taylor pour g: R — R) En appliquant le chain rule
deux fois, nous voyons que la fonction g(t) := f(a + th), t € [0,1], est
continiment dérivable deux fois, et

d() = flatthh =3 8 (a+th)h
=

) = Y &@f(a+th)h
=

= 3> ahdf(a+ th) hehy.

=1 k=t

D'aprés la Formule de Taylor pour g, il existe 9 € (0, 1) tel que

o)~ 0(0) = 50) + 55'0).
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En insérant les formules en haut, nous obtenons donc

Sla+h)—f(a)

PICHCIIRES SN CRRTA Y

3=t =
n 1

=) Oif(a)hs +3 > 09,/ (a) hihy
= =i

+ % 3 (30, f(a+ 9h) — 043, (a)) hehy

o
Comme |hy| < |h]| pour tout j,

Ir()l _ 1§ .

e < Ejglwka,f(awmfaka,f(n)\.

Par Phypothése, les secondes dérivées partielles 3,3;f sont continues, d’oit
nous pouvons conclure
) _

o [R[2

Définition (Hessienne) Pour [ € C*(U,R) et a € U la matrice

Hy(a

(333/(a)) € Mat(n,m)

est symétrique (selon le Théoréme de Schwarz). Elle s'appelle la Hessienne
de fena.

La Formule de Taylor de f € C*(U,R) en a s'écrit maintenant

fla+h) = f(a) + (V[(a),h>+%<Hl(a)h,h> +r(h)

im TR _

T =

Supposons maintenant que V f(a) = 0, cAd a est un point critique de f.




rId889.jpg
1458, La Hessienne, la formule de Taylor 300

a est un minimum local —=>
a est un minimum local <=
a est un maximum local =

a est un maximum local <=

Question : Etsin> 27
Comme Vf(a) = 0, nous savons que

fla+h)—f(a) = %(HI(“) .k} +r(h) o r(h) = of|A|*)

cad le changement de f prés de a est décrit par la forme quadratique
1
b S(H (@ hB).
Exemples pour n =2 : Sans perte de généralité nous supposons que a = 0.

@) = (@ +v*)  fzy) =2~y

Dans les trois cas nous avons f(z,y) = % <H,m) (Z) s (;)> ol

Hy0)=2 (é ‘1]) Hy0)= -2 (é (1’) Hy(0) =2 (é 7‘1’)

Définition. Une matrice symétrique A = A” € Mat(R", R") est dite

(a) définie positive (4 > 0) si (A£,¢) > 0 pour tout 0 # & € R”,

(b) définie négative (A < 0) si (A&,€) < 0 pour tout 0 # ¢ €R",

() indéfinie (A S) s'ils existent £,7 € R™ avee (A£,£) < 0 < (An,7).
Rappelons que f: U — R posséde un minimum (maximum) local isolé

ena e U sl existe & > 0 tel que f(a) < f(x) (f(a) > f(x)) pour tout  avec
0<|c—a|<e

Proposition. Soit f € CX(U,R) et a € U tel que Vf(a) =0, et soit Hy(a)
la Hessienne de f en a. Alors
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fzy) = 22+ y) = —(22+9?) J(z.y) = 22—
Courbes d’altitude :

- @

(a) Hy(a) >0 —=> [ posséde en a un minimum local isolé,

(b) Hy(a) <0 = f posséde en a un mazimum local isolé,
(c) Hy(a) S0 —> dans tout voisinage de a ils evistent ¢ et 7 avec

1(€) < f(a) < f(n)-

Preuve. Nous commensons avec le
Lemme. Pour A € Mat(R",R") on a
(a) A>0 <> il egiste a > 0 tel que (Az,7) > allz|* Vz €R7,
(b) A <0< il esiste a > 0 tel que (Az,7) < —afle|? Vo eR".

Preuve. (a) La fonction g: S = {y € R* | [ly2 = 1} — R, g(x) = (Az,7),
est continue. Elle atteint donc son minimum dans un point z* € S, cad

a(z) > g(z") :=a >0 pour tout z € 5.
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Pour 0 # 7 € R* nous avons Z; € S, et donc

1 T
W(Az,z) = g(m) > a.

(b) est prouvé de fagon identique. o

Preuve de la proposition : Comme V f(a) = 0, la Formule de Taylor donne

h
Ja+ =@ = Sl@h ) e Jm T -

() Si Hy(a) >0, il existe, selon le lemme, a > 0 tel que
(Hy(a)h,h) > a||h]]*>  pour tout h € R".

Choisissons & > 0 suffisament petit pour que

'ml‘ < %a si0<[hf<e.
Alors
fa+h) = (@) > SRR =S I0E = I s fll <
don

fla+h)> f(a) si0<[h]<e
(b) découle de (a) en remplacant f par —f.
(c) Si Hy(a) S 0, nous choisissons des vecteurs & et 7 avee (Hy(a)é,€) < 0
et (Hy(a)n,7) > 0 et regardons les fonctions
Fe(t) fla+1§)
Ft) = fla+in)

définies pour |(| suffisament petit. Leurs derivées premiéres et secondes en 0
sont

F(0) = f(a)€ =0, F{(0) = (H(a)&,€) <0
F(0) = f(a)n =0, F(0) = (Hy(a)n,m) >0,




rId898.jpg
312 14. Fonctions différentiables f: R" — R

d’olt F posséde en 0 un maximum local isolé et F;, posséde en 0 un minimum
local isolé. Nous concluons qu'il existe un > 0 avec

S(a+1€) < f(a) < fla+1tn) pour 0< |t <e.
a

Quand at-on A >0? Comme A est symétrique, on peut diagonaliser A :

Tl existe une matrice orthogonale U tel que B = U~'AU = diag(M, .-, An)
avee A; € R. Les propriétés A > 0, A < 0, A S 0 ne changent pas si on
conjuge, et clairement,

B >0 < ;>0 pour tout j,

B <0 < ); <0 pour tout j,

BS0 < ils existent i, j tels que A; < 0 et A; > 0.
Cependant, déterminer les A; peut prendre du temps. Ils existent d’autres
critéres plus directes. Nous traitons seulement le cas n =2 :

Lemme. Soit A= AT € Mat(R2,R2), A = (; ﬁ) . det A= ac— 2. Alors

(a) A>0<=detA>0eta>0,
(b) A<0<=detA>0eta<0,
() AS0 <> detA<0.
Preuve. (Caleul) Posons
q@) == (A7) = az?+ oz +exl oz = (z1,3).
(a) “= Si A > 0, alors g(z) > 0 pour = # 0. En choisissant = avec

23 = 0 et 7, # 0 nous obtenons donc (z) = az? > 0, d'ot a > 0. Ecrivons
‘maintenant g sous la forme

b \* v
q(z) = ﬂ(zwaz;) +(c—;)1§

b\ detA ,
= a(ztom) +— ==

b det A
En choisissant = # 0 avec 7, = ——, nous obtenons g(z) = ———a3 > 0,
a a

d'olt det A > 0.
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(b) découle de (a) en remplacant A par —A.

(c) est prouvé par un calcul similaire. o
Si det Hy(a) = 0, ce critére ne dit rien. Il faut alors étudier les dérivées

dordre 3, 4,

Exemple 1. Regardons les fonctions sur R?

Nz y) =2 +y',  flay) =2 fay) =2+

Ona
vi0.0= (") e H00=(2°) pourj=123
0 s 00
Pour /i : (0,0) est un minimum isolé; c’est un pot.

Pour /2 : (0,0) est un minimum non-isolé; c'est un demi-cylindre.

Pour f3 : (0,0) west pas un extremum local; cest un glissoire/tobogan.

Exemple 2. (Exercice) [(z,y) =32% —°

Formule de Taylor d’ordre arbitraire k > 2

1l sera convenable d'utiliser les notations suivantes.

Etant donnés ..., ap € {0,1,2,. .. } nous posons
a = (ana,...,00)
la| = artar+-tan

al = alale-ap!
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oit on utilise comme toujours la convention 0! := 1.

De plus, pour f € C1I(U, R) nous abbrégions

3 = 80,49, (a fois)

Pfa) = Koo f(x)

Par exemple, pour a = (2,0,1) on a 8*f(z) = ;2,2 2 [(x)
Similairement, pour & = (z1,...,7,) € R",
2% = a2l

Théoréme (Formule de Taylor)

Soit f € CK(U,R) et soit h € R™ tel que a + th € U pour tout ¢ € [0,1].
Alors il existe 0 = 9(a, f,h) € (0,1) tel que

fa+h) = @+ Y if“)huzwhﬂ
1<lal<k—1 ) I :

= f@+ Y 3’—‘{!‘“) K 4r(h) ob lim 1)

jim 7).
E
1<Jal<k ho [|h]

Le changement de / prés de a est donc décrit par le polynéme de Taylor

f(a
al

1<lal<k
& une erreur d'ordre of|[A|[¥) prés.

Preuve. Posons g(t) := f(a +th). Nous savons déja que

1

0(1) = 0(0) = 50) + 5, 6"O) -+ + 5 0O + 5 090)

(k—

)

pour un 9 € (0,1). L'affirmation suit en inserrant f et en appliquant le chain
rule. o
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14.9 Espace tangent au niveau

Retournons au gradient. Soit f: R" — R et ¢ € R. L'ensemble de niveau
Ne(f) est
Ne(f) == {z eR*| f(z) =c} C R™.

Définition. N,(f) est une hypersurface dans R" si f est continiiment
différentiable, N(f) n'est pas vide, et

Vi) #0 VYzeN(/)
Cest-a-dire N,(f) ne contient pas de points critiques de f.

y
I

FIGURE 14.4 — Quelques niveaux de f, entre autres N, et Ny

Exemples. 1. Pour f: R R, f(z,y) = 2 + 7, le seul point critique est
(0,0), le minimum. Nous avons trois types de niveaux :

Sic<0: N(f) est vide.

Sic=0: N(f) = (0,0) est un seul point. Ce n'est pas une hypersurface,
car V(0,0) = (g)

Sic>0: Ne(f) = 5'(r) est la sphére de rayon r = v/é. Clest une hypersur-
face, car V/(z,y) = 2 (;) # (g) pour tout (z,y) € S'(r).

2. Pour f: R2 - R, f(z,y) = 2% — ¢, le seul point eritique est (0,0), une
selle. Nous avons deux types de niveaux :
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doit
1

T £i pourtout n > N

ERE

<
et alors 5
1
0< (—) <& pourtoutn>N.
n

3.Siz>1,alors {/z > 1 pour tout n € N, d’olt

{/t—1>0 pourtoutn> N.

Yn
Avec l'inégalité de Bernoulli nous trouvons

T =(1+ya)" 2 1+nyn

0<

1
¥ < (@12

1
< (z—1)~ pourtoutneN,
n

et alors lim {/z

Si0<z<1alors L >1don

daprés la Proposition 3

4. Posons y, = ¢/ —1 > 0. En vertu du développement binomial nous
trouvons

()" =n = Q+wm)"

"
= Yn
%)
Y g
> 1 ()t
= 4 E=1)
= 1+ 5 Yn
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f>0

No(f) est un x infini. Ce n’est pas une hypersurface, car (0,0) € No(f)-

Sic#0: N(f) est une hypersurface, car la Vf(z,y) = 2 (7;) # (g)

Lensemble N,(f) a deux composantes. Chacune est un graphe d’une fonction
lisse sur I'axe-z ou Paxe-y. Caleuler cette fonction.

3. Pour f: R* = R, f(x) = |||, Vorigine est le seul point critique. Dans

cette généralisation du premier exemple, nous avons encore trois types de
niveaux :

V/(z)

Sic<0: Ny(f) est vide.

Sic=0: Ne(f) = 0 est un seul point. Ce nest pas une hypersurface, car
Vf(0) = 0.
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Sic>0:N(f) = {z € R | [lz> = c} = S7!(r) est la sphére dans R*
de rayon r = /. Clest une hypersurface, car V() = 2z # 0 pour tout
7€ (r).

Dans ces exemples, on a que Ne(f) est une hypersurface si et seulement
si No(f) “est de dimension n—1” et “Vespace tangent T, No(f)" existe pour
tout € N,(f). Dans la suite nous allons définir I'espace tangent & un point

dune hypersurface. L'équivalence va étre prouvée seulement dans le cours
Analyse Vectorielle.

Rappelons d’abord la construction suivante : Etant donné une hypersur-
face M = Ne(f), nous fixons a € M. Si v: R D [ — R" est un chemin
différentiable tel que 7(0) = a et 7(t) € M pour tout ¢ € I, alors

V(@) L4(0).

En fait, la fonction

w(t) = f(x(1)

est constante, d’on ¢'(t) = 0, et selon la chain rule,
0= ¢'(t) = df () (5(1) = (VI(r().7()-
Pour ¢ = 0 nous avons 7(0) = a, d’olt

4f(@)(5(0) = (V/(a).5(0)) = 0.

c

Vi(a)

4(0)

On peut s'imaginer une particule qui bouge le long de M, contrainte & M
par une force normale & M. Au moment ¢ = 0 la force est arrétée. La particule
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va done voler le long d’un rai qui commence en a = (0), avec le vecteur de
vitesse constante §(0). I est raisonnable de dire que ce vecteur est tangent
aM:

Soit M une hypersurface dans R”, et soit a € M.
Définition 1 (T, M, version dynamique)
L'espace tangent de M en a est lensemble

M

{3(0) | : I —» M un chemin différentiable tel que 7(0) = a} .

Avec cette définition, il n'est pas clair que T,M est un espace vectoriel!
Par contre, ceci est clair dans la
Définition 2 (T, M, version géométrique)
L'espace tangent de M en a est Iespace vectoriel
T.M = {veR"|(V/f(a),v) =0}
{v e R" | df(a)(v) = 0}
kerdf(a).

Nous venons de voir que
T, M version dynamique C T, M version géométrique.
Nous allons voir au cours Analyse Vectorielle du troisiéme semestre que

TuM version dynamique S TuM version géométrique,

Jest-a-dire : Etant donné v € kerdf(a), il existe un chemin différentiable
i 1= M tel que 7(0) = a et $(0) = v.

Avec la Définition 2, il est clair que Vf(a) L TuM. Plus précisément, on
a le résultat suivant.

Proposition. Soit M = N(f) = {z € R*| f(z) = c} une hypersurface
dans R", et soit a € M. Alors

R" = RV f(a) &1 TuM.

En particulier, dim T,M =n — 1.
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Preuve. En vertu de la définition d’une “hypersurface”, V f(a) # 0, d'oit
df(a)(Vf(a) = (V/(a),Vf(a)) = IVf(@)|* # 0.
La proposition découle done du lemme suivant appartenant a I'Algébre Linéaire,

avec

I=df(a) et z0=V/(a).

Lemme. Soit I: R" — R une application linéaire. S'il existe zo € R" avec
I(x) # 0, alors
R" = Rz @ kerl.

Preuve. Fixons z € R et posons A = I(z)/I(xo). Alors I(z — Azo) = 0. Avec
y 1=z — Az nous avons donc

T =Azo+y, yEkerl
Soit.
y Ekerl
une autre représentation de z. Alors () = Al(zy) = A (o), d'oit A = Ay,
et donc également y = y, € kerl o

T = Mzo+U

Exemple. Regardons la sphére
5" = {z € R | f() = |lal®

Alors V f(a) = 2a pour tout a € S"!(r) et
T,5"\(r) = {v €R" | (a,v) =0}.

Notons que espace tangent TaM n'est pas Uhyperplan tangent & M en a,
mais Iespace vectoriel parallel & cet hyperplan, qui mérite un nom aussi :

2y

Définition. Le plan tangent au point a € M de Phypersurface M C R®
est Phyperplan dans R™

PM = {z€R"|z=a+v,veT,M}
= {zeR"|d/(a)(x—a) =0}
= a+TM.

Pendant que Iespace tangent T, M est un espace vectoriel (contient 0), le
plan tangent P,M est done un espace affine qui contient . Par exemple,

PS"Nr) = {z €R"|(2a,2—a) =0}
{zeR*| (a,0) =12}
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V/(a)

FIGURE 14.5 — L'espace tangent T, M et le plan tangent I, M

14.10 Extrema liés

Nous savons qu'une condition nécessaire pour que a soit un point d’extremum
dune fonction différentiable f: R™ — R est que V() = 0.

Nous cherchons maintenant des points d’exremum sous des contraintes.
Etant donné :
e [:R" — R une fonction différentiable,

o M = {z €R" | g(z) = c} me hypersurface.

Regardons la restriction de f & M, Cest-a-dire la fonction

flu: MR

Nous cherchons des extrema locaux de f|y. Voici une condition nécessaire
pour que a soit un tel extremum.
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Théoreme (Multiplicateur de Lagrange)

Soit f: R™ — R différentiable et M = {z € R" | g(z) = c} une hypersurface.
Si la restriction f|y; de f a M posséde un minimum local (magimum local)
enaeM, ci-d

f(2) > fla) (f(«) < f(a)) pour tout =€ M avec v —all <&,
alors il existe A € R tel que

{V[(ﬂ) = AVy(a),

gla) = c

(ML)

Remarques
1. Le nombre A s'appelle multiplicateur de Lagrange.

2. On a Vg(a) # 0 par hypothése. La condition g(a) = ¢ exprime a € M.

3. Dans (ML) on a n +1 conditions pour les n + 1 inconnus ay, ..., a, A.
Exemple 1. (Mickey Mouse dans R?) Trouvons les extrema de la fonction
SR =R, fmy)=z+y

sur le cercle unité S' C R2

Le cercle
M= 5= {(z,9) | g(z.v) :=2>+ > =1}

est une hypersurface dans R2, car
Va(z,y) = 2(;) #0 pour (z,y) € S".

Comme S' est compact, la fonction continue f: S' — R posséde au moins
un minimum et un maximum. Selon le théoréme, les candidats a satisfont les
conditions

Vf(a) = AVg(a) pourunA€R,
gla) = lear aeS.
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Calculons
— 1 _ ay
Vo= (}). Ve -2(2).
d’ont
1 = A2,
1= Noas
gla) = a}+d} =1
O voit:que
Nanas £0, ay=ap A= oo, 22—
2a;
d’on
by ==

Les candidats sont donc les deux points sur S*
& 1 1
@a)=(F%5)  @w=(-F-%) @
Le premier point est un point de maximum de /s, car f (5. J) = V2, et
le deuxiéme point est un point de mimimum, car f (~5.~35 ) = —v2.

Remarque. Dans cet exemple simple on peut, bien sir, ramener le probleme
4 R en paramétrisant S*,

§t = {(@y) eR?|

=cost, y =sint}.
La fonction f|s: est alors donnée par

f(cost,sint) = cost+sint,

Cest-adire f|g1 =: I est la fonction d’une variable
F(t) = cost+sint, t€[0,2a].
Pour un point d’extremum (cost,sint) de f|s1 on a

F'(t) = —sint +cost = 0,
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T.M =T.N(f)

clest-a-dire sint = cost = i%, et on trouve les deux point d’extremum
dans (a).

Avant de donner la preuve, notons que géométriquement, le théoréme est
clair! En fait, supposons que a € M est un point tel que T,M # T,N().
Comme proche de a, M ressemble & T,M et N(f) ressemble a T,N(f), on
peut done déplacer a le long de M tel que f devient plus grand et on peut
déplacer a le long de M tel que f devient plus petit (voir le dessin). Une
condition nécessaire pourque a soit un extremum local de f|y est donc

T.M = T.N(J).
Comme Vg(a) L T,M et Vf(a) L T,N(f), cette identité implique que
Vo(a) || V/(a).
Par hypothése, Vg(a) # 0, d'ou cette identité est équivalente &
V/f(a) = AVg(a) pourunA€R.

Je vous propose de répéter cet argument géométrique pour 'Exemple 1 :
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Preuve du Théoréme. Nous traitons le cas oft a est un point de maximum
local. Soit v € TyM. Prenons un chemin différentiable v: R 5 1 — R tel
que

A0)=a, (0) et y(t) €M pour tout L€ l.
Regardons la restriction () = f(y(t)) e f sur ce chemin. Comme (t) € M
et f(x) < f(a) pour = € M prés de a on a

#(t) < f(a) = ¢(0),

cad : [ — R posséde un maximum local en ¢ = 0, d'ot ¢'(0) = 0. Avec le
chain rule,

0 = ¢/(0) = df (¥(0)) %(0) = df(a)v = (V/(a),v).
Ceci est vrai pour tout v € Ty M, cad
Vi(a) LT.M. (1)
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D'autre part, selon la définition de lespace tangent T, M,
Vg(a) L T,M. @)

D'aprés la proposition précédente, dim T, M = n—1. Ceci, (1) et (2) montrent
que V/(a) = AVg(a) pour un A € R. Explicitement : Selon la proposition,

R" = RVg(a) &1 TuM.
Tl existe done A € R et u € T,M tel que
V/f(a) = AVg(a) +u

doit
0 = (Vf(a),u) = MVg(a),u) + (1) = (u,u),
cad (u,u) = [Jul]® = 0, d'oit u = 0, et donc

V/(a) = AVg(a).

Exemple 2. Soit M C R" une hypersurface et soit a € R"\ M.

a

FIGURE 14.6 — Comment rejoindre la cote a la nage
Soit zo € M tel que
lzo — all = min{|lz —a|| |z € M}

Cest-a-dire o est un point sur M de distance minimale de a. Alors la droite
passant par a et o est orthogonale & M.
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1
ot
1 2
n—1 > nn—1)s4,
2 < 2,
n
2
W <
n
cad.

0.

e im L
Diaprés Exemple 2, lim J

5. Soit K € R donné. D’aprés 1. il existe un N € N tel que

<1 pourtoutn>N,

n!

nl > K"

/nl > K pour tout n > N.

pour tout n > N,

Clest vrai pour tout K € R, d’ott par la définition, lim ¥/n! = co.

6. sera démontré plus tard.

7. Choisissons k € N tel que k > a. Pour n > 2k > k nous trouvons
n

>2n—k+1> .
n>n -

Le développement binomial donne

(142" > (Z)z* =

«
1
'szWk pour n > 2k
don .
n® 2% k! 1
Y R,

2. Suites
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Preuve. Nous regardons la fonction
[R>S R, [f(z)=|lz—al?
(On prend le carré pour avoir une fonction lisse.) Nous savons que

M = {4

const }.

Notons que V f(z) = 2(z —a). Si f|u atteint un minimum en zo, il faut donc
que
Vf(2o) = 2(xo — a) est parallele & Vg(zo),

Cest-a-dire 7 — a est orthogonal & M. o
Voici une application plus profonde du théoréme de Lagrange.

Exemple 3. Décomposition spectrale d’un opérateur symétrique
Soit A € £(R", R") un opérateur symétrique,
(Av,w) = (v, Aw) Vo,weR™,

Autrement dit, la matrice de A par rapport 4 la base standard ei, .., en
de R™ est symétrique : [A] = [A]”. Alors A est diagonalisable.

Plus précisément : IIs existent des vecteurs propres vy, . ., v, qui sont ortho-
gonaux deux & deux. Dans cette base, la matrice de A est donc

A
4] = avec A, Ay €R.

An

Preuve. Je vous propose de comparer notre preuve avec celle que vous avez
vu en Algébre Linéaire.

Regardons la fonction f: R* — R,
f(@) = (Az,z), zER",

et la sphére
5t = {zeR® | ol = (@.2) =1}
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Cest une hypersurface dans R”, car
5t = {zeR" | g(z) = |lal* =1}
et Vg(z) = 2z # 0 pour tout = € S*'.
La sphére S"~! C R™ est compacte, d’oi la fonction continue
Slswr: S R

atteint son maximum, disons en a € S*1.
Selon le théoréme, il existe A € R tel que

{Vf(ﬂ) = AVy(a),

= 1. ©

Comme A est symétrique, V/(a) = (A + AT)a = 24a, et Vg(a) = 2a. Les
équations () sont donc équivalentes

Aa=Xa, =1

Cest-a-dire a est un vecteur propre de A de norme 1 et de valeur propre A.
Dans cet exemple, le multiplicateur de Lagrange A a donc une signification !
Comme
J(@) = (Aa,a) = A{a,a) = A,
nous avons donc

X s Az, z).
Hn:“a:xl(zz)

Regardons maintenant le complément orthogonal de a dans R,

Vaor = (a)* = {z €R" | (a,z) = 0}.

Lemme. A(V, 1) C V1.
Preuve. Pour vV, ona

veVa 1

(Av,a) = (v, A"a) *=2" (v, Aa) = A (v,a) 0,

Cest-da-dire Av € (a)* = V,,_;. Notons que nous avons utilisé la symétrie
de A une deuxiéme fois. a
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SPcR®

v

Gréce au lemme, nous pouvons répéter I'argument en haut avec
fiVaa R, 2o (Al ,z,2)

et avec la sphére unité M = 5% C V;,_,. Nous trouvons a,_; € Vo tel
que lan_[2=1et

Atny = Mntnog, OUA= A 2 Ay
En répétant ceci n fois nous obtenons une base orthonormée

—ian @npy...a deRT

de vecteurs propres de A & valeures propres

A= 2 Ay

Aa; = Nay,
(aa5) = &y

Pour § € R", § =) & ;, nous avons donc

=

.>M €ER,

clest-a-dire

(48,6 =Y ng
=
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Cest-a-dire la forme quadratique & ~ (AZ, ¢) est dans sa forme normale, et

dans cette base ay, ..., ay,, la matrice de A est
A
Ao 0
[4] = s NSRS
0
An

Remarque. Les opératenrs symétriques sur des espaces de dimension infinie
sont de grande importance en mécanique quantique. La méthode en haut
pent étre appliquée encore en dimension infinie.
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Remarques sur les EDP

Nous finissons ce cours avec quelques remarques sur les équations aux déri
partielles (EDP). Rappellons d’abord qu’un exemple d'une équation & dérivées
ordinaires (EDO) est PEDO linéaire

an(2,8) 2 (1) + ap_y (2, 8) 2 (L) + - - -+ ay (2, £) 7' (£) + ag(z, ) (1) = q(t).

Les fonctions continues a; et q(t): R x R — R sont données, et on cherche
une solution z: R — R. La dérivée est par rapport & la seule variable ¢ (qui
souvent est le temps, mais peut aussi étre un lieu, une température, etc.)

Cependant, beaucoup d’équations différentielles en physique, chimie, ... sont
des EDP : La fonction cherchée dépend de plusieurs variables, et I'équation
différentielle (“la loi” du probléme en question) contient des dérivées par-
tielles par rapport 4 des variables différentes. Nous donnons trois exemples.

1. Equations de la chaleur pour un matériel homogéne

Nous regardons une barre de métal homogéne de longueur . Chauffons la
barre par une bougie comme dans le dessin. Au moment ¢ = 0 nous retirons la
bougie. Soit p(z) la distribution de la température dans ce moment. Quelle
est la distribution au moment ¢ > 07 Appelons-la u(z, ). Supposons que
notre barre est dans le vide, tel que toute la chaleur reste dans la barre. Les
physiciens nous promettent alors que les fonctions u(z,t), = € [0,L], t > 0
satisfont 'équation aux dérivées partielles (I'équation de la chaleur)

(t>0) (EC)

La constante k > 0 dépend du matériel. Nous avons aussi la condition initiale

2,0) = plx)

Contrairement awx EDOs que nous avons regardé, nous cherchons donc toute
une famille & 1-paramétre e fonctions, et la condition initiale n'est pas un
nombre, mais une fonction. Voici trois propriétés de la solution u(x, 1) :

1. Pour tout ¢ > 0 fixé, la fonction u(z,t) est de classe C*°, méme si
p West pas continune (par exemple si p(z) = 1 sur un interval dans
(0,1) et p(z) = 0 en dehors).
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2. Lintégrale [ u(z,t)dz = C := [ p(z) dz ne dépend pas de L > 0.
3. Pour chaque z € [0, L] on a lim u(z,1) = (;

Les points 2. et 3. sont intuitivement clairs : La chaleur totale ne change pas,
et pour ¢ grand la température est partout la méme. Le phénomene décrit
dans 1. (lissage immédiat) est trés spécifique pour cette équation (qui est une
équation de diffusion) et pas vrai pour les deux autres équations en bas.

u(z,t)
4

~zeR
Liéquation (EC) se généralise aux dimensions n > 2,
‘;_7(1, 1) = kAu(z,t)  (t>0) (BC™)

ou A = 37, - est lopérateur de Laplace. Pour n = 2 cette équation
moddlise, par example, la conduction thermique dans une plaque homogéne.

2. Equation des ondes pour un matériel homogéne

Nous regardons une corde de violon, fixée awx deux bouts z = 0, L. Tirons
Ia corde en position A(z), Cest-a-dire A(z) est Iélongation verticale de la
corde en @ (et A(z) = 0 aux bouts). La corde va alors osciller. Soit u(z, t)
son élongation verticale en x au moment . On a encore u(, ¢) = 0 au bouts,
pour tout £.
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Les physiciens nous promettent alors que les fonctions u(z,t), = € [0, L],
t € R satisfont Péquation aux dérivées partielles (Iéquation des ondes)
&u , 0%
G = 5@l (teR) (EO)
La constante ¢ > 0 est la vitesse de propagation de Ponde et dépend du
matériel de la corde. Nous avons aussi la condition initiale

u(z,0) = A(z) (t=0).

Léquation (EO) se généralise aux dimensions n > 2,

&u

S(t) = ¢ duz, ). ®)

Pour n = 2 cette équation modélise, par example, Ioscillation d’une mem-
brane et I propagation d'une vague, et pour n = 3 la propagation du son et
de la Tumiére.

Les solutions de P'équation des ondes ont des propriétés trés différentes de
celles de 'équation de Ia chaleur. Par exemple des chocs peuvent se former,
qui correspondent & des singularités des solutions.

3. Equations de Schrédinger

Liéquation

%(I, ) = %Aw(:, ) (teR) (ES)
pour une fonction : R x R — C est I'équation principale de la méchanique
quantique. La solution 1(z, ¢) est la probabilité que la particule (par exemple
un elEctmn) se trouve au moment ¢ au lieux z. La constante h est la constante
de Planck réduite, et m est la masse de la particule. Le i fait que les solutions
de (ES) sont trés différentes de celles de (EC").

Pendant qu'il existe une théorie génerale et assez complete pour les ODE
(voir le cours Systémes dynamique du Master), il w'existe pas de théorie
génerale pour les EDP. Chaque EDP a sa propre théorie.
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Comme k—a > 0, lim 75 = 0 d'aprés 2., d'oh lim (1:—)" =0 d’aprés Ia
{143
Proposition 5 o

Proposition 6. Chague suite posséde une sous-suite monotone.

Preuve. Regardons Iensemble A C N défini par
A= {neN|z, >z, pour tout m > n}.
Nous distinguons dews cas.

Cas 1. A est un ensemble infini.

Choisissons n; € A. Comme A est infini, il existe no € A avec na > nu.
Comme n; € 4, on a
Tny 2 Tnge

Inductivement, nous trouvons ainsi une suite n; < ny < ng < ... dans A tel
que
Tny > Ty, VEZL

La sous-suite (¢, )21 est monotone décroissante.
Cas 2. A est un ensemble fini (possiblement vide).

1l existe done N € N tel que n ¢ A pour tout n > N. (On peut prendre
N :=max A.) Par définition de A nous avons donc que :

Pour tout n > N il existe un m > n tel que zm > zn.
Choissons maintenant n, > N. Nous trouvons donc ny > n, tel que
Tpy > Tny-
Inductivement, nous trouvons ainsi une suite n; < n2 < ns < ... tel que
Toy < Tnyy, VAL

La sous-suite (5, )k>1 est monotone croissante. ]




